Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T16:47:52.224Z Has data issue: false hasContentIssue false

A remark on a conjecture on the symmetric Gaussian problem

Published online by Cambridge University Press:  15 April 2024

Nicola Fusco
Affiliation:
Dipartimento di Matematica ed Applicazioni R. Caccioppoli, Università degli studi di Napoli Federico II, Napoli, Campania, Italy
Domenico Angelo La Manna*
Affiliation:
Dipartimento di Matematica ed Applicazioni R. Caccioppoli, Università degli studi di Napoli Federico II, Napoli, Campania, Italy
*
Corresponding author: Domenico Angelo La Manna, email: domenicoangelo.lamanna@unina.it

Abstract

In this paper, we study the functional given by the integral of the mean curvature of a convex set with Gaussian weight with Gaussian volume constraint. It was conjectured that the ball centred at the origin is the only minimizer of such a functional for certain values of the mass. We prove that this is the case in dimension 2 while in higher dimension the situation is different. In fact, for small values of mass, the ball centred at the origin is a local minimizer, while for larger values the ball is a maximizer among convex sets with a uniform bound on the curvature.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barchiesi, M., Brancolini, A. and Julin, V., Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality, Ann. Probab. 45(2) (2017), 668697.CrossRefGoogle Scholar
Barchiesi, M. and Julin, V., Symmetry of minimizers of a Gaussian isoperimetric problem, Probab. Theory Related Fields 177 (2019), 217256.CrossRefGoogle Scholar
Barthe, F., An isoperimetric result for the Gaussian measure and unconditional sets, Bull. Lond. Math. Soc. 33(4) (2001), 408416.CrossRefGoogle Scholar
Borell, C., The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), 207216.CrossRefGoogle Scholar
Carbotti, A., Cito, S., La Manna, D. A. and Pallara, D., A quantitative dimension free isoperimetric inequality for the fractional Gaussian perimeter, Comm. Anal. Geom. (to appear) (2024).Google Scholar
Cianchi, A., Fusco, N., Maggi, F. and Pratelli, A., On the isoperimetric deficit in Gauss space, Amer. J. Math. 133(1) (2011), 131186.CrossRefGoogle Scholar
De Rosa, A. and La Manna, D. A., A non local approximation of the Gaussian perimeter: gamma convergence and isoperimetric properties, Commun. Pure Appl. Anal. 20(5) (2021), 21012116.CrossRefGoogle Scholar
Fusco, N., The quantitative isoperimetric inequality and related topics, Bull. Math. Sci. 5(3) (2015), 517607.CrossRefGoogle Scholar
Fusco, N. and La Manna, D. A., Some weighted isoperimetric inequalities in quantitative form, J. Funct. Anal. 285(2) (2023), .CrossRefGoogle Scholar
Heilman, S., Low correlation noise stability of symmetric sets, J. Theor. Probab. 34(4) (2021), 21922240.CrossRefGoogle Scholar
Heilman, S., Symmetric convex sets with minimal Gaussian surface area, Amer. J. Math. 143(1) (2021), 5394.CrossRefGoogle Scholar
Heilman, S., Convex cylinders and the symmetric Gaussian isoperimetric problem, (2022) Preprint, available at, https://arxiv.org/abs/2204.12003.Google Scholar
La Manna, D. A., Local minimality of the ball for the Gaussian perimeter, Adv. Calc. Var. 12 (2017), 193210.CrossRefGoogle Scholar
La Manna, D. A., An isoperimetric problem with a coulombic repulsion and attractive term, ESAIM: COCV 25 (2019), .Google Scholar
Livshyts, G. V., On a conjectural symmetric version of Ehrhard’s inequality, arXiv (2021).Google Scholar
Novaga, N., Pallara, D. and Sire, Y., A symmetry result for degenerate elliptic equations on the Wiener space with nonlinear boundary conditions and applications, Discrete Contin. Dyn. Syst. Ser. S 9(3) (2016), 815831.CrossRefGoogle Scholar
Schneider, R., Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, Vol. 151 (Cambridge University Press, Cambridge, 2014).Google Scholar
Sudakov, V. N. and Tsirel’son, B. S., Extremal properties of half-spaces for spherically invariant measures, J. Sov. Math. 9 (1978), 918.CrossRefGoogle Scholar