Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-06T19:29:25.940Z Has data issue: false hasContentIssue false

Hermitian Operators on Banach Jordan Algebras

Published online by Cambridge University Press:  20 January 2009

M. A. Youngson
Affiliation:
Mathematics Department, University of Edinburgh.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note, we examine some of the properties of Hermitian operators on complex unital Banach Jordan algebras, that is, those operators with real numerical range. Recall that a unital Banach Jordan algebra J, is a (real or complex) Jordan algebra with product a ˚ b, having a unit 1, and a norm ∥·∥, such that J, with norm ∥·∥, is a Banach space, ∥1∥ = 1, and, for all a and b in j,

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1979

References

(1) Alfsen, E. M., Shultz, F. W., and Stormer, E., A Gelfand-Neumark Theorem for Jordan algebras, Advances in Math. 28 (1978), 1156.CrossRefGoogle Scholar
(2) Bonsall, F. F., Jordan algebras spanned by Hermitian elements of a Banach algebra, Math. Proc. Camb. Phil. Soc. 81 (1977), 313.CrossRefGoogle Scholar
(3) Bonsall, F. F. and Duncan, J., Complete Normed Algebras (Springer-Verlag, Berlin, Heidelberg, New York, 1973).CrossRefGoogle Scholar
(4) Bonsall, F. F. and Duncan, J., Numerical ranges of operators on normed linear spaces and of elements of normed algebras, (London Math. Soc. Lecture Note Series 2, Cambridge University Press, 1971).CrossRefGoogle Scholar
(5) Braun, H. and Koecher, M., Jordan-Algebren (Springer-Verlag, Berlin, Heidelberg, New York, 1966).CrossRefGoogle Scholar
(6) Jacobson, N., Structure and Representations of Jordan algebras (Amer. Math. Soc. Colloquim Publications 39, Providence, 1968).Google Scholar
(7) Jordan, P., Von Neumann, J., and Wigner, E., On an algebraic generalisation of the quantum mechanical formulation, Ann. of Math. (2) 35 (1934), 2964.CrossRefGoogle Scholar
(8) Kaup, W., Algebraic Characterisation of Symmetric Complex Banach Manifolds, Math. Ann. 228 (1977), 2964.CrossRefGoogle Scholar
(9) Sakai, S., C∗-algebras and W∗-algebras (Springer-Verlag, Berlin, Heidelberg, New York, 1971).Google Scholar
(10) Sinclair, A. M., Jordan homomorphisms and derivations of semi-simple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209214.Google Scholar
(11) StøRmer, E., On the Jordan structure of C∗-algebras, Trans. Amer. Math. Soc. 120 (1965), 438447.Google Scholar
(12) Topping, D. M., Jordan Algebras of self-adjoint Operators, Mem. Amer. Math. Soc. 53 (1965), 148.Google Scholar
(13) Wright, J. D. M., Jordan C∗-algebras, Mich. Math. J. 24 (1977), 291302.CrossRefGoogle Scholar
(14) Wright, J. D. M., and Youngson, M. A., On Isometries of Jordan algebras, J. London Math. Soc. (2) 17 (1978), 339344.CrossRefGoogle Scholar
(15) Youngson, M. A., A Vidav Theorem for Banach Jordan Algebras, Math. Proc. Camb. Philos. Soc. 84 (1978) 263272.CrossRefGoogle Scholar
(16) Kaup, W. and Upmeier, H., Jordan Algebras and symmetric Siegel Domains in Banach spaces, Math. Zeit. 157 (1977), 179200.CrossRefGoogle Scholar
(17) Braun, R., Kaup, W. and Upmeier, H., A Holomorphic Characterisation of Jordan C∗-algebras, Math. Zeit. 161 (1978), 277290.CrossRefGoogle Scholar