Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T10:18:59.898Z Has data issue: false hasContentIssue false

A–∞-interpolation in the ball

Published online by Cambridge University Press:  20 January 2009

Xavier Massaneda
Departament de Matemàtiques i Informàtica, Estudis Universitari de Vic, Carrer de Miramarges 4, 08500-Vic, Spain
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a necessary and sufficient condition for a sequence {ak}k in the unit ball of n to be interpolating for the class A–∞ of holomorphic functions with polynomial growth. The condition, which goes along the lines of the ones given by Berenstein and Li for some weighted spaces of entire functions and by Amar for H functions in the ball, is given in terms of the derivatives of m ≥ n functions F1, …,Fm ∈ A–∞ vanishing on {ak}k.

Research Article
Copyright © Edinburgh Mathematical Society 1998



1.Amar, E., Interpolating sequences in the ball of ℂn, preprint (1996).Google Scholar
2.Berenstein, C. A. and Li, H. Q., Interpolating varieties for weighted spaces of entire functions in ℂn, Publ. Mat. 38 (1994), 157173.CrossRefGoogle Scholar
3.Berndtsson, B., A formula for interpolation and division in ℂn, Math. Ann. 263 (1983), 399418.CrossRefGoogle Scholar
4.Bruna, J. and Pascuas, D., Interpolation in A–∞, J. London Math. Soc. 40 (1989), 452466.CrossRefGoogle Scholar
5.Hörmander, L., Generators for some rings of analytic functions, Bull. Amer. Math. Soc. (1967), 943949.CrossRefGoogle Scholar
6.Hörmander, L., An introduction to complex analysis in several variables. 2nd ed. (North Holland Publishing Co., Amsterdam, 1973).Google Scholar
7.Jevtić, M., Massaneda, X. and Thomas, P., Interpolating sequences for weighted Bergman spaces of the ball, Michigan Math. J. 43 (1996), 495517.CrossRefGoogle Scholar
8.Kelleher, J. and Taylor, B. A., Finitely generated ideals in rings of analytic functions, Math. Ann. 193 (1971), 225237.CrossRefGoogle Scholar
9.Korenblum, B., An extension of the Nevanlinna theory, Acta Math. 135 (1975), 187219.CrossRefGoogle Scholar
10.Massaneda, X., A–p-interpolation in the unit ball, J. London Math. Soc. 52 (1995), 391401.CrossRefGoogle Scholar
11.Massaneda, X., Interpolation by holomorphic functions in the unit ball with polynomial growth, Ann. Fac. Sci. Toulouse, to appear.Google Scholar
12.Rudin, W., Function theory in the unit ball ofn (Springer Verlag, Berlin, 1980).CrossRefGoogle Scholar
13.Seip, K., Beurling type density theorems in the unit disk, Invent. Math. 113 (1993), 2139.CrossRefGoogle Scholar
14.Thomas, P. J., Oral Communication (1996).Google Scholar