Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-16T22:22:10.907Z Has data issue: false hasContentIssue false

IN SEARCH FOR SHARED CHARACTERISTICS OF PHYSICAL AND VIRTUAL PROTOTYPES

Published online by Cambridge University Press:  19 June 2023

Stefan Zorn*
Affiliation:
University of Rostock
Michael Hemmer
Affiliation:
University of Rostock
Kilian Gericke
Affiliation:
University of Rostock
*
Zorn, Stefan, University of Rostock, Germany, stefan.zorn@uni-rostock.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Prototyping is essential for knowledge acquisition and, thus, for informed decision-making in product development. The gold standard is still the use of physical prototypes. However, with the increase in computing capacity, it is becoming easier also to use virtual prototypes.

The selection of prototyping approaches often starts with the distinction between physical and virtual prototypes and therefore excluding a broad range of possibilities early on.

This paper explains why a selection of prototypes based on the distinction between physical and virtual is not necessarily the best solution and suggests a selection approach based on characteristics which offer the possibility to avoid this limitation. Therefore the characteristics of physical prototypes commonly used in literature are analysed and reduced to a generally valid selection. Examples of virtual prototypes are selected and analysed regarding their characteristics. All elaborated characteristics are then tested for their applicability to the examples of virtual prototypes.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

ars TECHNICA (2016) VR started with gaming—but it will take over every other industry. Available at: https://arstechnica.com/gadgets/2016/09/vr-ar-in-business-and-industry/.Google Scholar
Auflem, M. et al. (2020) ‘On Prototyping Methods to Leverage Non-Rigid Materials in the Early Stages of ENGINEERING DESIGN’, Proceedings of the Design Society: DESIGN Conference, 1(May), pp. 24452454. Available at: https://doi.org/10.1017/dsd.2020.120.Google Scholar
Bracht, U., Geckler, D. and Wenzel, S. (2018) Digitale Fabrik: Methoden und Praxisbeispiele. Berlin, Heidelberg: Springer Berlin Heidelberg. Available at: https://doi.org/10.1007/978-3-662-55783-9.CrossRefGoogle Scholar
Bryan-Kinns, N. and Hamilton, F. (2002) ‘One for all and all for one? Case studies of using prototypes in commercial projects.’ in Proceedings of the second Nordic conference on Human-computer interaction. New York, NY, USA: ACM, pp. 91100. Available at: https://doi.org/10.1145/572020.572032.CrossRefGoogle Scholar
Camburn, Bradley Adam et al. (2013) ‘Connecting design problem characteristics to prototyping choices to form a prototyping strategy’, ASEE Annual Conference and Exposition, Conference Proceedings [Preprint], (November 2018). Available at: https://doi.org/10.18260/1-2--19344.CrossRefGoogle Scholar
Camburn, Bradley A. et al. (2013) ‘Methods for prototyping strategies in conceptual phases of design: Framework and experimental assessment’, Proceedings of the ASME Design Engineering Technical Conference, 5(August). Available at: https://doi.org/10.1115/DETC2013-13072.Google Scholar
Camburn, B.A. (2015) ‘Evaluation of a Strategic Method To Improve Prototype Performance With Reduced Cost and Fabrication Time’, Proceedings of the 20th International Conference on Engineering Design, (July), pp. 1–10.Google Scholar
CLEANPNG - free PNG Archiv (2023). Available at: https://de.cleanpng.com/.Google Scholar
Dörner, R. et al. (2019) Virtual und Augmented Reality (VR/AR). Berlin, Heidelberg: Springer Berlin Heidelberg. Available at: https://doi.org/10.1007/978-3-662-58861-1.CrossRefGoogle Scholar
Dowlatshahi, S. (1994) ‘A morphological approach to product design in a concurrent engineering environment’, The International Journal of Advanced Manufacturing Technology, 9(5), pp. 324332. Available at: https://doi.org/10.1007/BF01781286.CrossRefGoogle Scholar
Eroglu, S. et al. (2018) ‘Fluid Sketching―Immersive Sketching Based on Fluid Flow’, in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, pp. 475482. Available at: https://doi.org/10.1109/VR.2018.8446595.CrossRefGoogle Scholar
Filippi, S. and Barattin, D. (2012) ‘Classification and Selection of Prototyping Activities for Interaction Design’, Intelligent Information Management, 04(04), pp. 147156. Available at: https://doi.org/10.4236/iim.2012.44022.CrossRefGoogle Scholar
Gebhardt, A. (2016) Additive Fertigungsverfahren: Additive Manufacturing und 3D-Drucken für Prototyping - Tooling - Produktion.CrossRefGoogle Scholar
Hamon, C. et al. (2014) ‘Virtual or Physical Prototypes? Development and Testing of a Prototyping Planning Tool’, in 2014 ASEE Annual Conference & Exposition Proceedings. ASEE Conferences, pp. 24.1361.124.1361.16. Available at: https://doi.org/10.18260/1-2--23294.CrossRefGoogle Scholar
Hannah, R., Michaelraj, A. and Summers, J.D. (2008) ‘A proposed taxonomy for physical prototypes: Structure and validation’, Proceedings of the ASME Design Engineering Technical Conference, 1(PARTS A AND B), pp. 231243. Available at: https://doi.org/10.1115/DETC2008-49976.CrossRefGoogle Scholar
Hansen, C.A. et al. (2020) ‘Fostering Prototyping Mindsets in Novice Designers with the Prototyping Planner’, Proceedings of the Design Society: DESIGN Conference, 1, pp. 17251734. Available at: https://doi.org/10.1017/dsd.2020.132.Google Scholar
Hochreuther, T., Diefenbach, S. and Lenz, E. (2013) ‘Durch schnelles Scheitern zum Erfolg: Eine Frage des passenden Prototypen?’, in Usability Professionals 2013. German UPA - Berufsverband der Deutschen Usability and User Exoerience Professionals.Google Scholar
HOUDE, S. and HILL, C. (1997) ‘What do Prototypes Prototype?’, Handbook of Human-Computer Interaction, pp. 367381. Available at: https://doi.org/10.1016/b978-044481862-1/50082-0.CrossRefGoogle Scholar
GmBH, IAV (2012) Virtuelle Techniken im industriellen Umfeld. Edited by IAV GmBH (Ingenieursgesellschaft Auto und Verkehr). Berlin, Heidelberg: Springer Berlin Heidelberg. Available at: https://doi.org/10.1007/978-3-642-20636-8.CrossRefGoogle Scholar
Jensen, L.S., Özkil, A.G. and Mortensen, N.H. (2016) ‘Prototypes in engineering design: Definitions and strategies’, in Proceedings of International Design Conference, DESIGN. Faculty of Mechanical Engineering and Naval Architecture, pp. 821830.Google Scholar
Jensen, M.B., Balters, S. and Steinert, M. (2015) ‘Measuring prototypes-a standardised quantitative description of prototypes and their outcome for data collection and analysis’, Proceedings of the International Conference on Engineering Design, ICED, 2(DS 80-02), pp. 114.Google Scholar
Kirchner, E. (2020) Werkzeuge und Methoden der Produktentwicklung. Berlin, Heidelberg: Springer Berlin Heidelberg. Available at: https://doi.org/10.1007/978-3-662-61762-5.CrossRefGoogle Scholar
Lauff, C.A., Kotys-Schwartz, D. and Rentschler, M.E. (2018) ‘What is a prototype? What are the roles of prototypes in companies?’, Journal of Mechanical Design, Transactions of the ASME, 140(6). Available at: https://doi.org/10.1115/1.4039340.CrossRefGoogle Scholar
Liker, JK and Pereira, R.M. (2018) ‘Virtual and Physical Prototyping Practices: Finding the Right Fidelity Starts With Understanding the Product’, IEEE Engineering Management Review, 46(4), pp. 7185. Available at: https://doi.org/10.1109/EMR.2018.2873792.CrossRefGoogle Scholar
Lim, Y.-K., Stolterman, E. and Tenenberg, J. (2008) ‘The anatomy of prototypes’, ACM Transactions on Computer-Human Interaction, 15(2), pp. 127. Available at: https://doi.org/10.1145/1375761.1375762.CrossRefGoogle Scholar
Mackay, W. and Beaudouin-Lafon, M. (2009) ‘Prototyping Tools and Techniques’, in, pp. 121143. Available at: https://doi.org/10.1201/9781420088892.ch7.CrossRefGoogle Scholar
McCurdy, M. et al. (2006) ‘Breaking the fidelity barrier: An Examination of our Current Characterisation of Prototypes and an Example of a Mixed-Fidelity Success’, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, pp. 12331242. Available at: https://doi.org/10.1145/1124772.1124959.CrossRefGoogle Scholar
Otto, K. and Wood, KL (2001) Product Design: Techniques in Reverse Engineering and New Product Development. Prentice Hall.Google Scholar
Perez-Smith, F. (2020) How-to-use-generative-design-in-fusion-360. Available at: https://www.manandmachine.co.uk/how-to-use-generative-design-in-fusion-360/.Google Scholar
Petrakis, K., Hird, A. and Wodehouse, A. (2019) ‘The concept of purposeful prototyping: Towards a new kind of taxonomic classification’, Proceedings of the International Conference on Engineering Design, ICED, 2019-Augus(August), pp. 16431652. Available at: https://doi.org/10.1017/dsi.2019.170.CrossRefGoogle Scholar
Polydoras, S., Sfantsikopoulos, M. and Provatidis, C. (2011) ‘Rational Embracing of Modern Prototyping Capable Design Technologies into the Tools Pool of Product Design Teams’, ISRN Mechanical Engineering, 2011, pp. 112. Available at: https://doi.org/10.5402/2011/739892.CrossRefGoogle Scholar
Real, R. et al. (2021) ‘Dimensions of Knowledge in Prototyping: a Review and Characterisation of Prototyping Methods and Their Contributions To Design Knowledge’, Proceedings of the Design Society, 1(AUGUST), pp. 13031312. Available at: https://doi.org/10.1017/pds.2021.130.CrossRefGoogle Scholar
Rysinski, J. and Wrobel, I. (2015) ‘Diagnostics of machine parts by means of reverse engineering procedures’, Advances in Mechanical Engineering, 7(5), p. 168781401558454. Available at: https://doi.org/10.1177/1687814015584543.CrossRefGoogle Scholar
Schenk, M. and Schumann, M. (eds) (2016) Angewandte Virtuelle Techniken im Produktentstehungsprozess. Berlin, Heidelberg: Springer Berlin Heidelberg. Available at: https://doi.org/10.1007/978-3-662-49317-5.CrossRefGoogle Scholar
Stowe, D. (2008) Investigating the Role of Prototyping in Mechanical Design Using Case Study Validation. Clemson University. Available at: https://tigerprints.clemson.edu/all_theses/532.Google Scholar
Ulrich, K.T. and Eppinger, S.D. (2012) Product Design and Development Product Design and Development, The McGraw-Hill Companies. Available at: https://doi.org/10.1016/B978-0-7506-8985-4.00002-4.Google Scholar
Vajna, S. et al. (2018) CAx für Ingenieure. Berlin, Heidelberg: Springer Berlin Heidelberg. Available at: https://doi.org/10.1007/978-3-662-54624-6.CrossRefGoogle Scholar
VDI-2209 (2009) ‘VDI 2209 - 3D product modelling - Technical and organisational requirements - Procedures, tools, and applications - Cost-effective, practical use’.Google Scholar
Virzi, R.A., Sokolov, J.L. and Karis, D. (1996) ‘Usability problem identification using both low- and high-fidelity prototypes’, in Proceedings of the SIGCHI conference on Human factors in computing systems common ground - CHI ’96. New York, New York, USA: ACM Press, pp. 236243. Available at: https://doi.org/10.1145/238386.238516.CrossRefGoogle Scholar
Wall, M.B., Ulrich, K.T. and Flowers, W.C. (1991) ‘Making Sense of Prototyping Technologies for Product Design’, in 3rd International Conference on Design Theory and Methodology. American Society of Mechanical Engineers, pp. 151158. Available at: https://doi.org/10.1115/DETC1991-0042.Google Scholar
Wall, M.B., Ulrich, K.T. and Flowers, W.C. (1992) ‘Evaluating prototyping technologies for product design’, Research in Engineering Design, 3(3), pp. 163177. Available at: https://doi.org/10.1007/BF01580518.CrossRefGoogle Scholar
Yavuz Erkek, M., et al. (2021) ‘Augmented Reality Visualisation of Modal Analysis Using the Finite Element Method’, Applied Sciences, 11(3), p. 1310. Available at: https://doi.org/10.3390/app11031310.CrossRefGoogle Scholar