Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T01:07:46.814Z Has data issue: false hasContentIssue false

Criticality-based planning of prototype sequences

Published online by Cambridge University Press:  16 May 2024

Stefan Zorn*
Affiliation:
University of Rostock, Germany
Tobias Glaser
Affiliation:
University of Rostock, Germany
Kilian Gericke
Affiliation:
University of Rostock, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The understanding of prototyping has changed in recent years to an approach that accompanies the product development process. This paper examines whether classic approaches from product development are also suitable for planning prototyping sequences. The stepwise process-oriented and the problem-oriented approach are discussed. A criticality assessment is proposed as a metric for the prioritization of the functional areas and a procedure is derived from this. The procedure is illustrated using an example. The result is discussed and future steps are suggested.

Type
Design Methods and Tools
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2024.

References

Albers, A., Klingler, S. and Wagner, D. (2014), “Prioritization of validation activities in product development processes”, Proceedings of International Design Conference, DESIGN, Vol. 2014-Janua, pp. 8190.Google Scholar
Bender, B. and Gericke, K. (Eds.). (2020), Pahl/Beitz Konstruktionslehre - Methoden Und Anwendung Erfolgreicher Produktentwicklung, 9. Auflage., Springer Vieweg.CrossRefGoogle Scholar
Butzke, J. (2019), Verfahrenstechnische Weiterentwicklung Des Fused Layer Manufacturing Zur Reduzierung Der Anisotropie Im Bauteil, https://doi.org/10.14279/depositonce-7651.CrossRefGoogle Scholar
Camburn, B., Dunlap, B., Gurjar, T., Hamon, C., Green, M., Jensen, D., Crawford, R., et al. . (2015), “A Systematic Method for Design Prototyping”, Journal of Mechanical Design, Transactions of the ASME, Vol. 137 No. 8, https://dx.doi.org/10.1115/1.4030331.CrossRefGoogle Scholar
Camburn, B., Viswanathan, V., Linsey, J., Anderson, D., Jensen, D., Crawford, R., Otto, K., et al. . (2017), “Design prototyping methods: State of the art in strategies, techniques, and guidelines”, Design Science, Vol. 3 No. Schrage 1993, pp. 133, https://dx.doi.org/10.1017/dsj.2017.10.CrossRefGoogle Scholar
Christie, E.J., Jensen, D.D., Buckley, R.T., Menefee, D.A., Ziegler, K.K., Wood, K.L. and Crawford, R.H. (2012), “Prototyping strategies: Literature review and identification of critical variables”, ASEE Annual Conference and Exposition, Conference Proceedings, No. November 2018, https://dx.doi.org/10.18260/1-2--21848.CrossRefGoogle Scholar
Dunlap, B.U., Hamon, C.L., Camburn, B.A., Crawford, R.H., Jensen, D.D., Green, M.G., Otto, K., et al. . (2014), “Heuristics-based prototyping strategy formation: Development and testing of a new prototyping planning tool”, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Vol. 11 No. November 2018, https://dx.doi.org/10.1115/IMECE2014-39959.Google Scholar
Fricke, G. (1993), “Konstruieren als flexiber Problemlöseprozess: empirische untersuchung über erfolgreiche Strategien und methodische Vorgehensweisen beim Konstruieren”, VDI-Verlag, Düsseldorf.Google Scholar
Hansen, C.A., Jensen, L.S., Özkil, A.G. and Martins Pacheco, N.M. (2020), “FOSTERING PROTOTYPING MINDSETS in NOVICE DESIGNERS with the PROTOTYPING PLANNER”, Proceedings of the Design Society: DESIGN Conference, Vol. 1, pp. 17251734, https://dx.doi.org/10.1017/dsd.2020.132.Google Scholar
Hansen, C.A. and Özkil, A.G. (2020), “From Idea to Production: A Retrospective and Longitudinal Case Study of Prototypes and Prototyping Strategies”, Journal of Mechanical Design, Vol. 142 No. 3, https://dx.doi.org/10.1115/1.4045385.CrossRefGoogle Scholar
Lauff, C., Menold, J. and Wood, K.L. (2019), “Prototyping canvas: Design tool for planning purposeful prototypes”, Proceedings of the International Conference on Engineering Design, ICED, Vol. 2019-Augus No. August, pp. 15631572, https://dx.doi.org/10.1017/dsi.2019.162.CrossRefGoogle Scholar
Menold, J., Jablokow, K. and Simpson, T. (2017), “Prototype for X (PFX): A holistic framework for structuring prototyping methods to support engineering design”, Design Studies, Vol. 50, https://dx.doi.org/10.1016/j.destud.2017.03.001.CrossRefGoogle Scholar
Schork, S., Güttinger, K. and Kirchner, E. (2020), “Analysis of properties for the development of additively manufactured prototypes—the House of Properties”, Forschung Im Ingenieurwesen/Engineering Research, Vol. 84 No. 4, pp. 293303, https://dx.doi.org/10.1007/s10010-020-00412-3.CrossRefGoogle Scholar
Sutcliffe, A. and Sawyer, P. (2013), “Requirements elicitation: Towards the unknown unknowns”, 2013 21st IEEE International Requirements Engineering Conference (RE), IEEE, pp. 92104, https://dx.doi.org/10.1109/RE.2013.6636709.CrossRefGoogle Scholar
Ulrich, K.T. and Eppinger, S.D. (2012), Product Design and Development Product Design and Development, The McGraw-Hill Companies, Vol. 5th, https://dx.doi.org/10.1016/B978-0-7506-8985-4.00002-4.Google Scholar