Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-26T15:58:04.507Z Has data issue: false hasContentIssue false

MODEL-BASED PRODUCT CONFIGURATION OF HIGH VARIETY PRODUCT PORTFOLIOS

Published online by Cambridge University Press:  11 June 2020

C. Wyrwich*
Affiliation:
RWTH Aachen University, Germany
G. Jacobs
Affiliation:
RWTH Aachen University, Germany
J. Siebrecht
Affiliation:
RWTH Aachen University, Germany
C. Konrad
Affiliation:
RWTH Aachen University, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Facing a rising competitive pressure, manufactures create advantages when they are able to offer customer-specific products to the conditions of a mass production article. Traditional configurators support the creation of personalized products from the elements of a modular product system, but are based on a pre-defined set of rules. The model based approach changes the environment of configuration from static configuration rules to the dependencies defined within the product's system model. So, by regarding target quantities of the user, the configurator identifies the optimal variant.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Abbasi, E.K. et al. (2013), “The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases”, In Advanced Information Systems Engineering, CAiSE 2013, Lecture Notes in Computer Science, held in Valencia, Springer, Berlin, Heidelberg, pp. 162177. https://doi.org/10.1007/978-3-642-38709-8_11CrossRefGoogle Scholar
Arnoscht, J. et al. (2010), “Effizienter innovieren mit Produktbaukästen: Studienergebnisse und Leitfaden - ein Beitrag zu Lean Innovation”, http://publications.rwth-aachen.de/record/96865Google Scholar
Borowski, K.H. (1961), Das Baukastensystem in der Technik, 5. Bd., Springer, Berlin. https://doi.org/10.1007/978-3-642-48735-4CrossRefGoogle Scholar
Brinkop, A. (2019), Marktführer Produktkonfiguration, Brinkop Consulting, Vol. 39. Ausgabe, Available at: https://brinkop-consulting.com/guide/marktfuehrer.pdfGoogle Scholar
Deißenböck, F., Fritzsche, M. and Fernández, D.M. (2010), Wirtschaftlichkeit der modellbasierten Entwicklung: Workshop Hot-Spots der Software-Entwicklung, TU München. Available at: https://docplayer.org/15422778-Wirtschaftlichkeit-der-modellbasierten-entwicklung.htmlGoogle Scholar
Eigner, M., Koch, W. and Muggeo, C. (Eds.) (2017), Modellbasierter Entwicklungsprozess cybertronischer Systeme: Der PLM-unterstützte Referenzentwicklungsprozess der für Produkte und Produktionssysteme, Springer, Berlin. https://doi.org/10.1007/978-3-662-55124-0CrossRefGoogle Scholar
Feldhusen, J. and Grote, K.-H. (Eds.) (2013), Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29569-0CrossRefGoogle Scholar
Felfering, A. et al. (2002), “Knowledge Acquisition for Buildung and Integrating Product Configurations”, Collaborative Business Ecosystems and Virtual Enterprises, PRO-VE 2002, IFIP - The International Federation for Information Processing, Springer, Boston, Massachusetts, pp. 193200. https://doi.org/10.1007/978-0-387-35585-6_21Google Scholar
Gausemeier, J. et al. (2013), “Studie: Systems Engineering in der industriellen Praxis”, Tag des Systems Engineering, Stuttgart, Germany, November 6-8, 2013, Hanser Verlag, München, pp. 113122. https://doi.org/10.3139/9783446439467CrossRefGoogle Scholar
Gentz, C. et al. (2018), “Entwicklung eines elektrisch-leistungsverzweigten Anbaugeräteantriebs”, Land.Technik 2018: das Forum für agrartechnische Innovationen, Leinfelden-Echterdingen, Germany, November, 12-13, 2018, VDI Verlag GmbH, Düsseldorf, pp. 2052011. http://publications.rwth-aachen.de/record/766583Google Scholar
Göpfert, J. (1998), Modulare Produktentwicklung: Zur gemeinsamen Gestaltung von Technik und Organisation, Dissertation, Ludwig-Maximilians-Universität München, Gabler, Wiesbaden, https://doi.org/10.1007/978-3-663-08152-4CrossRefGoogle Scholar
Günter, A. and Kühn, C. (1999), “Knowledge-Based Configuration: Survey and Future Directions”, XPS 99: Knowledge-Based Systems, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 4766. https://doi.org/10.1007/10703016_3Google Scholar
Grundel, M. et al. (2014), “FAS4M - No more: ‘Please mind the gap!’”, Tag des Systems Engineering, Bremen, Germany, November 12-14, 2014, pp. 6374.CrossRefGoogle Scholar
Hellenbrand, D. and Lindemann, U. (2008), “Using the DSM to support the Selection of Product Concepts”, 10th International Design Structure Matrix Conference, Stockholm, Sweden, November 11-12, 2008, pp. 363374.Google Scholar
Jankovic, M., Holley, V. and Yannou, B. (2012), “Muliple-Domain Scorecards: A method for architecture generation and evaluation through interface characterization”, Journal of Engineering Design, Vol. 23, pp. 746766. https://doi.org/10.1080/09544828.2012.706270CrossRefGoogle Scholar
Jiao, J., Simpson, T.W. and Siddique, Z. (2007), “Product family design and platform-based product development: a state-of-the-art review”, Journal of Intelligent Manufacturing, Vol. 18, pp. 529. https://doi.org/10.1007/s10845-007-0003-2CrossRefGoogle Scholar
Katzwinkel, T. et al. (2018), “MBSE on parameter level”, NAFEMS18 DACH Conference Berechnung und Simulation: Anwendugen, Entwicklungen, Trends, Bamberg, Germany, May 14-16, 2018, pp. 129132, http://publications.rwth-aachen.de/record/723965Google Scholar
Konrad, C. et al. (2017), “Varianzsteuerung integraler Produkte durch den prozessbegleitenden Einsatz von Data-Mining Werkzeugen”, 15. Gemeinsames Kolloquium Konstruktionstechnik: Interdisziplinäre Produktentwicklung, Duisburg, Germany, October 5-6, 2017, pp. 213222. http://doi.org/10.17185/duepublico/44616CrossRefGoogle Scholar
Männistö, T., Soininen, T. and Reijo, S. (2001), “Product Configuration View to Software Product Families”, Helsinki University of Technology, Available at: http://www.soberit.tkk.fi/pdmg/papers/mannisto.pdfGoogle Scholar
Puls, C. (2003), “Die Konfigurations- und Verträglichkeitsmatrix als Beitrag zum Management von Konfigurationswissen in KMU”, VDI Verlag, Düsseldorf. https://doi.org/10.3929/ETHZ-A-004518023CrossRefGoogle Scholar
Riesener, M. (2015), Ähnlichkeitsbasierte Produktkonfiguration im Maschinenbau, Dissertation, Apprimus Verlag, Aachen.Google Scholar
Schneeweiss, D. and Hofstedt, P. (2013), “FdConfiq: A Constraint-Based Interactive Product Configurator”, In Applications of Declarative Programming and Knowledge Management, INAP 2011, WLP 2011, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41524-1CrossRefGoogle Scholar
Schuh, G., Arnoscht, J. and Nußbaum, C. (2007), “Produktarchitekturen richtig gestalten: ein Weg zum variantenoptimierten Produktprogramm”, Industrie-Management: Zeitschrift für industrielle Geschäftsprozesse, pp. 2932, http://publications.rwth-aachen.de/record/158901?ln=deGoogle Scholar
Schuh and Co. GmbH (Eds.) (2011), Effektivität und Effizienz durch Produktbaukästen, Das Complexity Management Journal, Ausgabe 3/2011, Available at: https://schuh-group.com/site/assets/files/1561/cm-journal_3-2011_2016-03-31_esa_korr.pdfGoogle Scholar
Simpson, T.W. (2004), “Product platform design and customiziation: Status and promise”, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Cambridge University Press, pp. 320. https://doi.org/10.1017/S0890060404040028Google Scholar
Stormer, H. (2007), “Kundenbasierte Produktkonfiguration”, Informatik Spektrum , Springer, pp. 322326. https://doi.org/10.1007/s00287-007-0177-1Google Scholar
Tiihonen, J. et al. (1996), “State-of-the-practice in product configuration: A survey of 10 cases in the Finnish industry”, Knowledge Intensive CAD, Chapman & Hall, pp. 95114.CrossRefGoogle Scholar
Weilkiens, T. (2011), Systems Engineering with SySML/UML: Modeling, Analysis, Design, ElsevierGoogle Scholar