Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T00:29:43.023Z Has data issue: false hasContentIssue false

INTRODUCTION AND INVESTIGATION OF A METHOD FOR THE SYNTHESIS AND SELECTION OF HYBRID ELECTRIC VEHICLE DRIVETRAIN DESIGN IN THE EARLY STAGE OF PRODUCT GENERATION ENGINEERING (PGE)

Published online by Cambridge University Press:  11 June 2020

A. Albers*
Affiliation:
Karlsruhe Institute of Technology, Germany
S. Ruoff
Affiliation:
Karlsruhe Institute of Technology, Germany
K. Bause
Affiliation:
Karlsruhe Institute of Technology, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, a method is presented, that supports the developer in the development of hybrid electrical vehicle drivetrains. The developer gets support in the early stage of product generation engineering, beginning with the definition of the system of objectives, via the automated synthesis and investigation of the drivetrain topologies, ending with a topology ranking, which is related to the system of objectives, and a similarity analysis. As the method is implemented in a tool, the results of the tool and its usability are investigated within two comprehensive descriptive studies.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Albers, A. et al. (2014), “Development of Hybrid-Powertrains by Means of X-in-the-Loop-Approach”, Paper presented at Braunschweig Symposium on Hybrid and Electric Vehicles, Vol. 11, 2014, Braunschweig, February 18-19, ITS mobility e.V., Braunschweig, pp. 233250.Google Scholar
Albers, A. et al. (2016a), “iPeM – integrated Product engineering Model in context of Product Generation Engineering”, Paper presented at 26th CIRP Design Conference, Stockholm, Sweden, 2016. https://doi.org/10.1016/j.procir.2016.04.168CrossRefGoogle Scholar
Albers, A., Bursac, N. and Rapp, S. (2016b), “PGE–Product Generation Engineering – Case Study of the Dual Mass Flywheel ”, In Marjanović, D. (Ed.), International Design Conference DESIGN 2016, Dubrovnik, Croatia, May 16-19, 2016, The Design Society, Glasgow, pp. 791800.Google Scholar
Albers, A., Lohmeyer, Q. and Ebel, B. (2011), “Dimensions of objectives in interdisciplinary product development projects”, Paper presented at 18th International Conference on Engineering Design 2011 (ICED 2011), August 15-19, Copenhagen, Denmark.Google Scholar
Albers, A. et al. (2017), “Die Frühe Phase der PGE – Produktgenerationsentwicklung”, Paper presented at Stuttgarter Symposium für Produktentwicklung 2017, Stuttgart, Germany.Google Scholar
Blessing, L.T.M. and Chakrabarti, A. (2009), DRM, a Design Research Methodology, Springer, London.10.1007/978-1-84882-587-1CrossRefGoogle Scholar
Dechter, R. and Cohen, D. (2003), Constraint processing, Morgan Kaufmann Publishers, San Francisco.Google Scholar
Eghtessad, M. et al. (2015), “Antriebsstrangoptimierung von Elektrofahrzeugen”, ATZ Automobiltechnische Zeitschrift, No. 09-2015, pp. 7885.10.1007/s35148-015-0089-3CrossRefGoogle Scholar
Haag, A. (2017), Konzepte für effiziente hybride Triebstränge, Springer Fachmedien Wiesbaden.10.1007/978-3-658-19967-8CrossRefGoogle Scholar
Krischke, A. and Röpcke, H. (2015), Graphen und Netzwerktheorie: Grundlagen - Methoden - Anwendun-gen; mit zahlreichen Beispielen, Fachbuchverlag Leipzig im Hanser Carl-Hanser-Verlag, München.Google Scholar
Müller, J., Liebold, J. and Danzer, C. (2016), “Leistungsfähiges Hybridgetriebe für zukünftige Plug-in-Antriebe”, ATZ - Automobiltechnische Zeitschrift, Vol. 118 No. 10, pp. 1623.10.1007/s35148-016-0104-3CrossRefGoogle Scholar
Reuschlé, T. et al. (2016), “Multi-Objective Optimization of Plug-In Hybrid Powertrains – Certification Procedure Sensitivity”, in Schäfer, H. (Ed.), Haus der Technik 139: Elektrische Traktions- und Hilfsantriebe für die Elektrifizierung und Hybridisierung von Kraftfahrzeugen, Vol. 139, Expert Verlag, Renningen, pp. 4159.Google Scholar
Ruoff, S., Busch, M. and Bause, K. (2018), “Evaluation of new hybrid electric vehicle drivetrain topologies”, Paper presented at International Electric Vehicle Symposium EVS 31, 30.09.-03.10.2018, Kobe.Google Scholar
Ruoff, S. et al. (2019a), “Methode zur automatisierten Topologiesynthese und Bewertung hybrider Antriebsstränge”, in DFX 2019: Proceedings of the 30th Symposium Design for X, 18-19 September 2019, Jesteburg, Germany, 18th-19th September 2019, The Design Society. https://doi.org/10.35199/dfx2019.18CrossRefGoogle Scholar
Ruoff, S. et al. (2019b), “Investigation of the necessity of methodical support of the developer to combine the advantages of two hybrid electric topologies in order to increase the number of realizable functions”, Paper presented at International Electric Vehicle Symposium EVS 32, 21.-24.05.2019, Lyon.Google Scholar
Silvas, E. et al. (2016), “Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles”, IEEE Transactions on Vehicular Technology, p. 1.10.1109/TVT.2016.2547897CrossRefGoogle Scholar
Silvas, E. et al. (2015), “Functional and Cost-Based Automatic Generatorfor Hybrid Vehicles Topologies”, IEEE/ASME Transactions on Mechatronics, Vol. 20 No. 4, pp. 15611572.10.1109/TMECH.2015.2405473CrossRefGoogle Scholar
Sturm, A. et al. (2016), “Powertrain dimensioning of electrified vehicle concepts based on a synthesis”, Paper presented at Conference on Future Automotive Technology, 03.-04-05.2016, Fürstenfeldbruck.Google Scholar
Teuschl, G. (2009), “Hybrid- und Elektrofahrzeuge”, ATZ - Automobiltechnische Zeitschrift, Vol. 111 No. 6, pp. 434440.10.1007/BF03222080CrossRefGoogle Scholar
Voss, B. (2005), “Hybridfahrzeuge”, Fachbuch / Haus der Technik, Band, Vol. 52, Expert-Verl., Renningen.Google Scholar
Zimmermann, H.-J. and Gutsche, L. (1991), Multi-Criteria Analyse. Einführung in die Theorie der Entscheidungen bei Mehrfachzielsetzungen, Springer Verlag, Berlin, Heidelberg.Google Scholar