Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T14:06:03.246Z Has data issue: false hasContentIssue false

METHOD OF MOMENTS ESTIMATION FOR LÉVY-DRIVEN ORNSTEIN–UHLENBECK STOCHASTIC VOLATILITY MODELS

Published online by Cambridge University Press:  02 June 2020

Xiangyu Yang
Affiliation:
School of Management, Fudan University, Shanghai, China E-mail: xyyang19@fudan.edu.cn
Yanfeng Wu
Affiliation:
Jiangxi University of Finance and Economics, Nanchang, Jiangxi, China E-mail: wuyanfeng@jxufe.edu.cn
Zeyu Zheng
Affiliation:
Department of Industrial Engineering and Operations Research, University of California Berkeley, Berkeley, CA, USA E-mail: zyzheng@berkeley.edu
Jian-Qiang Hu
Affiliation:
School of Management, Fudan University, Shanghai, China E-mail: hujq@fudan.edu.cn

Abstract

This paper studies the parameter estimation for Ornstein–Uhlenbeck stochastic volatility models driven by Lévy processes. We propose computationally efficient estimators based on the method of moments that are robust to model misspecification. We develop an analytical framework that enables closed-form representation of model parameters in terms of the moments and autocorrelations of observed underlying processes. Under moderate assumptions, which are typically much weaker than those for likelihood methods, we prove large-sample behaviors for our proposed estimators, including strong consistency and asymptotic normality. Our estimators obtain the canonical square-root convergence rate and are shown through numerical experiments to outperform likelihood-based methods.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T.G., Chung, H.J., & Sørensen, B.E. (1999). Efficient method of moments estimation of a stochastic volatility model: a Monte Carlo study. Journal of Econometrics 91(1): 6187.CrossRefGoogle Scholar
Bansal, R., Gallant, A.R., Hussey, R., & Tauchen, G. (1994). Computational aspects of nonparametric simulation estimation. In Belsley, DA (ed.), Computational Techniques for Econometrics and Economic Analysis. Advances in Computational Economics, Vol. 3. Dordrecht: Springer, pp. 322.CrossRefGoogle Scholar
Barndorff-Nielsen, O.E. & Shephard, N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63(2): 167241.CrossRefGoogle Scholar
Billingsley, P. (2008). Probability and measure. New York: John Wiley & Sons.Google Scholar
Bregantini, D. (2013). Moment-based estimation of stochastic volatility. Journal of Banking & Finance 37(12): 47554764.CrossRefGoogle Scholar
Brockwell, P.J., Davis, R.A., & Fienberg, S.E. (1991). Time series: theory and methods. New York: Springer Science & Business Media.CrossRefGoogle Scholar
Carrasco, M. & Chen, X. (2002). Mixing and moment properties of various garch and stochastic volatility models. Econometric Theory 18(1): 1739.CrossRefGoogle Scholar
Duffie, D. & Singleton, K.J. (1990). Simulated moments estimation of Markov models of asset prices. Econometrica 61(4): 929952.CrossRefGoogle Scholar
Durham, G.B. & Gallant, A.R. (2002). Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. Journal of Business & Economic Statistics 20(3): 297338.CrossRefGoogle Scholar
Fama, E.F. (1965). The behavior of stock-market prices. The Journal of Business 38(1): 34105.CrossRefGoogle Scholar
Francq, C. & Zakoian, J.M. (2019). GARCH models: structure, statistical inference and financial applications. New York: John Wiley & Sons.CrossRefGoogle Scholar
Frühwirth-Schnatter, S. & Sögner, L. (2009). Bayesian estimation of stochastic volatility models based on OU processes with marginal gamma law. Annals of the Institute of Statistical Mathematics 61(1): 159179.CrossRefGoogle Scholar
Gallant, A.R. & Tauchen, G. (1996). Which moments to match? Econometric Theory 12(4): 657681.CrossRefGoogle Scholar
Ghysels, E., Harvey, A.C., & Renault, E. (1996). 5 stochastic volatility. Handbook of Statistics 14: 119191.CrossRefGoogle Scholar
Griffin, J.E. & Steel, M.F. (2006). Inference with non-Gaussian Ornstein–Uhlenbeck processes for stochastic volatility. Journal of Econometrics 134(2): 605644.CrossRefGoogle Scholar
Griffin, J.E. & Steel, M.F. (2010). Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein–Uhlenbeck processes. Computational Statistics & Data Analysis 54(11): 25942608.CrossRefGoogle Scholar
Harvey, A., Ruiz, E., & Shephard, N. (1994). Multivariate stochastic variance models. The Review of Economic Studies 61(2): 247264.CrossRefGoogle Scholar
Haug, S., Klüppelberg, C., Lindner, A., & Zapp, M. (2007). Method of moment estimation in the Cogarch (1,1) model. The Econometrics Journal 10(2): 320341.CrossRefGoogle Scholar
Heston, S.L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies 6(2): 327343.CrossRefGoogle Scholar
Ibragimov, I.A. (1962). Some limit theorems for stationary processes. Theory of Probability & Its Applications 7(4): 349382.CrossRefGoogle Scholar
Jasra, A., Stephens, D.A., Doucet, A., & Tsagaris, T. (2011). Inference for Lévy-driven stochastic volatility models via adaptive sequential Monte Carlo. Scandinavian Journal of Statistics 38(1): 122.CrossRefGoogle Scholar
Masuda, H. (2004). On multidimensional Ornstein-Uhlenbeck processes driven by a general Lévy process. Bernoulli 10(1): 97120.CrossRefGoogle Scholar
Peng, Y.J., Fu, M.C., & Hu, J.Q. (2014). Gradient-based simulated maximum likelihood estimation for Lévy-driven Ornstein–Uhlenbeck stochastic volatility models. Quantitative Finance 14(8): 13991414.CrossRefGoogle Scholar
Peng, Y., Fu, M.C., & Hu, J.Q. (2016). Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions. Quantitative Finance 16(9): 13931411.CrossRefGoogle Scholar
Roberts, G.O., Papaspiliopoulos, O., & Dellaportas, P. (2004). Bayesian inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66(2): 369393.CrossRefGoogle Scholar
Ruiz, E. (1994). Quasi-maximum likelihood estimation of stochastic volatility models. Journal of Econometrics 63(1): 289306.CrossRefGoogle Scholar
Spiliopoulos, K. (2009). Method of moments estimation of Ornstein-Uhlenbeck processes driven by general Lévy process. Annales de l'ISUP 53: 3–18.Google Scholar
Taylor, S.J. (2008). Modelling financial time series. New York: World Scientific.Google Scholar
Wu, Y., Hu, J., & Zhang, X. (2019). Moment estimators for the parameters of Ornstein-Uhlenbeck processes driven by compound Poisson processes. Discrete Event Dynamic Systems 29(1): 5777.CrossRefGoogle Scholar