Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-w9nzq Total loading time: 0.347 Render date: 2021-08-05T11:03:56.437Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

THE RANDOM NEURAL NETWORK FOR COGNITIVE TRAFFIC ROUTING AND TASK ALLOCATION IN NETWORKS AND THE CLOUD

Published online by Cambridge University Press:  22 May 2017

Lan Wang
Affiliation:
Department of Electrical and Electronic Engineering, Imperial College, London SW7 2BT, UK E-mail: lan.wang12@imperial.ac.uk
Corresponding
E-mail address:

Abstract

G-Network queueing network models, and in particular the random neural network (RNN), are useful tools for decision making in complex systems, due to their ability to learn from measurements in real time, and in turn provide real-time decisions regarding resource and task allocation. In particular, the RNN has led to the design of the cognitive packet network (CPN) decision tool for the routing of packets in the Internet, and for task allocation in the Cloud. Thus in this paper, we present recent research on how to dynamically create the means for quality of service (QoS) to end users of the Internet and in the Cloud. The approach is based on adapting the decisions so as to benefit users as the conditions in the Internet and in Cloud servers vary due to changing traffic and workload. We present an overview of the algorithms that were designed based on the RNN, and also detail the experimental results that were obtained in three areas: (i) traffic routing for real-time applications, which have strict QoS constraints; (ii) routing approaches, which operate at the overlay level without affecting the Internet infrastructure; and (iii) the routing of tasks across servers in the Cloud through the Internet.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. FCC (2013). 2013 measuring broadband america. In Office of Engineering and Technology and Consumer and Governmental Affairs Bureau. Washington, DC, USA: Federal Communications Commission.Google Scholar
2. Baldi, M., Martin, J.D., Masala, E. & Vesco, A. (2008). Quality-oriented video transmission with pipeline forwarding. IEEE Transactions on Broadcasting 54(3): 542556.CrossRefGoogle Scholar
3. Gelenbe, E. (2010). Search in unknown random environments. Physical Review E 82(6): 061112.CrossRefGoogle ScholarPubMed
4. Gelenbe, E. & Wu, F.-J. (2012). Large scale simulation for human evacuation and rescue. Computers & Mathematics with Applications 64(12): 38693880. [Online]. Available: http://dx.doi.org/10.1016/j.camwa.2012.03.056.CrossRefGoogle Scholar
5. Soucek, S. & Sauter, T. (2004). Quality of service concerns in ip-based control systems. IEEE Transactions on Industrial Electronics 51(6): 12491258.CrossRefGoogle Scholar
6. Soldatos, J., Vayias, E. & Kormentzas, G. (2005). On the building blocks of quality of service in heterogeneous ip networks. IEEE Communications Surveys and Tutorials 7(1): 6988. [Online]. Available: http://dx.doi.org/10.1109/COMST.2005.1423335.CrossRefGoogle Scholar
7. Dong, H. & Hussain, F.K. (2011). Focused crawling for automatic service discovery, annotation, and classification in industrial digital ecosystems. IEEE Transactions on Industrial Electronics 58(6): 21062116.CrossRefGoogle Scholar
8. Dong, H., Hussain, F.K. & Chang, E. (2011). A service search engine for the industrial digital ecosystems. IEEE Transactions on Industrial Electronics 58(6): 21832196.CrossRefGoogle Scholar
9. Santos, R., Pedreiras, P. & Almeida, L. (2012). Demonstrating an enhanced ethernet switch supporting video sensing with dynamic QoS. In DCOSS, pp. 293294.Google Scholar
10. Borzemski, L. & Kaminska-Chuchmala, A. (2013). Distributed web systems performance forecasting using turning bands method. IEEE Transactions on Industrial Informatics 9(1): 254261.CrossRefGoogle Scholar
11. Toral-Cruz, H., Argaez-Xool, J., Estrada-Vargas, L. & Torres-Roman, D. (2011). An introduction to voip: End-to-end elements and QoS parameters. InTech, pp. 7994.Google Scholar
12. Roychoudhuri, L. & Al-Shaer, E.S. (2005). Real-time packet loss prediction based on end-to-end delay variation. IEEE Transactions on Network and Service Management 2(1): 2938.CrossRefGoogle Scholar
13. Canovas, S.R.M. & Cugnasca, C.E. (2010). Implementation of a control loop experiment in a network-based control system with LonWorks technology and IP networks. IEEE Transactions on Industrial Electronics 57(11): 38573867.CrossRefGoogle Scholar
14. Cucinotta, T., Mancina, A., Anastasi, G., Lipari, G., Mangeruca, L., Checcozzo, R. & Rusina, F. (2009). A real-time service-oriented architecture for industrial automation. IEEE Transactions on Industrial Informatics 5(3): 267277.CrossRefGoogle Scholar
15. Felser, M., Jasperneite, J. & Gaj, P. (2013). Guest editorial special section on distributed computer systems in industry. IEEE Transactions on Industrial Informatics 9(1): 181.CrossRefGoogle Scholar
16. Gaj, P., Jasperneite, J. & Felser, M. (2013). Computer communication within industrial distributed environment – a survey. IEEE Transactions on Industrial Informatics 9(1): 182189.CrossRefGoogle Scholar
17. Gelenbe, E., Hussain, K. & Kaptan, V. (2005). Simulating autonomous agents in augmented reality. Journal of Systems and Software 74(3): 255268. [Online] Available: http://dx.doi.org/10.1016/j.jss.2004.01.016.CrossRefGoogle Scholar
18. Silvestre-Blanes, J., Almeida, L., Marau, R. & Pedreiras, P. (2011). Online qos management for multimedia real-time transmission in industrial networks. IEEE Transactions on Industrial Electronics 58(3): 10611071.CrossRefGoogle Scholar
19. Friedman, A.C.T. & Caceres, R. (2003). Rfc3611: Rtp control protocol extended reports (rtcp xr).Google Scholar
20. Morton, G.R.A., Ciavattone, L. & Perser, J. (2006). Rfc4737: Packet reordering metrics.Google Scholar
21. Larzon, L.-A., Degermark, M. & Pink, S. (2001). Requirements on the tcp/ip protocol stack for real-time communication in wireless environments. In Quality of Service in Multiservice IP Networks, Lecture Notes in Computer Science Volume 1989. Springer, pp. 273283.Google Scholar
22. Masala, E., Quaglia, D. & Carlos de Martin, J. (2008). Variable time scale multimedia streaming over IP networks. IEEE Transactions on Multimedia 10(8): 16571670.CrossRefGoogle Scholar
23. Baldi, M. & Marchetto, G. (2013). Time-driven priority router implementation: Analysis and experiments. IEEE Transactions on Computers 62(5): 10171030.CrossRefGoogle Scholar
24. Soldatos, J., Vayias, E. & Kormentzas, G. (2005). On the building blocks of quality of service in heterogeneous IP networks. IEEE Communications Surveys and Tutorials 7(1): 6988. [Online] Available: http://dx.doi.org/10.1109/COMST.2005.1423335.CrossRefGoogle Scholar
25. Aras, C., Kurose, J., Reeves, D. & Schulzrinne, H. (1994). Real-time communication in packet-switched networks. Proceedings of the IEEE 82(1): 122139.CrossRefGoogle Scholar
26. Markopoulou, A.P., Tobagi, F.A. & Karam, M.J. (2002). Assessing the quality of voice communications over internet backbones. IEEE/ACM Transactions on Networking 11: 747760.CrossRefGoogle Scholar
27. Kostas, T., Borella, M., Sidhu, I., Schuster, G., Grabiec, J. & Mahler, J. (1998). Real-time voice over packet-switched networks. IEEE Network 12(1): 1827.CrossRefGoogle Scholar
28. Cetinkaya, C., Kanodia, V. & Knightly, E. (2001). Scalable services via egress admission control. IEEE Transactions on Multimedia 3(1): 6981.CrossRefGoogle Scholar
29. Baldi, M. & Marchetto, G. (2013). Time-driven priority router implementation: Analysis and experiments. IEEE Transactions on Computers 62(5): 10171030.CrossRefGoogle Scholar
30. Baldi, M., De Martin, J., Masala, E. & Vesco, A. (2008). Quality-oriented video transmission with pipeline forwarding. IEEE Transactions on Broadcasting 54(3): 542556.CrossRefGoogle Scholar
31. Dahmouni, H., Girard, A., Ouzineb, M. & Sanso, B. (2012). The impact of jitter on traffic flow optimization in communication networks. IEEE Transactions on Network and Service Management 9(3): 279292.CrossRefGoogle Scholar
32. Dobson, S., Denazis, S.G., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F., Schmidt, N. & Zambonelli, F. (2006). A survey of autonomic communications. TAAS 1(2): 223259. [Online]. Available: http://doi.acm.org/10.1145/1186778.1186782.CrossRefGoogle Scholar
33. Galis, A., Plattner, B., Smith, J.M., Denazis, S.G., Moeller, E., Guo, H., Klein, C., Serrat, J., Laarhuis, J., Karetsos, G.T. & Todd, C. (2000). A flexible IP active networks architecture. In Proceedings of Second International Working Conference on Active Networks (IWAN 2000), Tokyo, Japan, 16–18 October 2000, series Lecture Notes in Computer Science, Yasuda, H., Ed., vol. 1942. Springer, pp. 115. [Online]. Available: http://dx.doi.org/10.1007/3-540-40057-5_1.Google Scholar
34. Mathieu, B., Song, M., Galis, A., Cheng, L., Jean, K., Ocampo, R., Brunner, M., Stiemerling, M. & Cassini, M. (2007). Self-management of context-aware overlay ambient networks. In Integrated Network Management, IM 2007. 10th IFIP/IEEE International Symposium on Integrated Network Management, Munich, Germany, 21–25 May 2007, pp. 749752. [Online] Available: http://dx.doi.org/10.1109/INM.2007.374704.CrossRefGoogle Scholar
35. Abuseta, Y. & Swesi, K. (2015). Design patterns for self-adaptive systems engineering. International Journal of Software Engineering & Applications (IJSEA) 6(4): 1126.CrossRefGoogle Scholar
36. Kuklinski, S. & Chemouil, P. (2014). Network management challenges in software-defined networks. IEICE Transactions 97-B(1): 29. [Online]. Available: http://search.ieice.org/bin/summary.php?id=e97-b_1_2.CrossRefGoogle Scholar
37. Savage, S., Collins, A., Hoffman, E., Snell, J. & Anderson, T. (1999). The end-to-end effects of internet path selection. SIGCOMM Computer Communication Review 29(4): 289299. [Online]. Available: http://doi.acm.org/10.1145/316194.316233.CrossRefGoogle Scholar
38. Paxson, V. (1996). End-to-end routing behavior in the Internet. In Proceedings of ACM SIGCOMM’96, Stanford, CA, USA, pp. 2538.Google Scholar
39. Labovitz, C., Malan, R. & Jahanian, F. (1998). Internet routing instability. IEEE/ACM Transactions on Networking 6(5): 515526.CrossRefGoogle Scholar
40. Labovitz, C., Ahuja, A., Bose, A. & Jahanian, F. (2000). Delayed internet routing convergence. SIGCOMM Computer Communication Review 30(4): 175187. [Online]. Available: http://doi.acm.org/10.1145/347057.347428.CrossRefGoogle Scholar
41. Dahlin, M., Chandra, B., Gao, L. & Nayate, A. (2001). End-to-end wan service availability. In Proceedings of 3rd USITS, pp. 97108.Google Scholar
42. Han, J. & Jahanian, F. (2004). Impact of path diversity on multi-homed and overlay networks. In Proceedings of IEEE International Conference on Dependable Systems and Networks.Google Scholar
43. Peterson, L., Shenker, S. & Turner, J. (2004). Overcoming the internet impasse through virtualization. In Proceedings of the 3rd ACM Workshop on Hot Topics in Networks (HotNets-III).Google Scholar
44. Touch, J., Wang, Y., Eggert, L. & Finn, G. (2003). A virtual internet architecture. ISI, Technical Report, ISI-TR-2003-570.Google Scholar
45. Feamster, N., Balakrishnan, H., Rexford, J., Shaikh, A. & van der Merwe, J. (2004). The case for separating routing from routers. In Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architecture, A. Press, Ed.Google Scholar
46. Beck, M., Moore, T. & Plank, J. (2003). An end-to-end approach to globally scalable programmable networking. In Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architecture, A. Press, Ed.Google Scholar
47. Andersen, D., Balakrishnan, H., Kaashoek, F. & Morris, R. (2001). Resilient overlay networks. In Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles, ser. SOSP ’01. New York, NY, USA: ACM, pp. 131145. [Online]. Available: http://doi.acm.org/10.1145/502034.502048.CrossRefGoogle Scholar
48. Gummadi, K.P., Madhyastha, H.V., Gribble, S.D., Levy, H.M. & Wetherall, D. (2004). Improving the reliability of internet paths with one-hop source routing. In Proceedings of the 6th Symposium on Operating Systems Design and Implementation.Google Scholar
49. Hu, S.-Y. & Liao, G.-M. (2004). Scalable peer-to-peer networked virtual environment. In NetGames’04: Proceedings of 3rd ACM SIGCOMM Workshop on Network and System Support for Games. New York, NY, USA: ACM Press, pp. 129133.Google Scholar
50. Nakao, A., Peterson, L. & Bavier, A. (2006). Scalable routing overlay networks. SIGOPS Operating Systems Review 40(1): 4961.CrossRefGoogle Scholar
51. Delimitrou, C. & Kozyrakis, C. (2013). Qos-aware scheduling in heterogeneous datacenters with paragon. ACM Transactions on Computer Systems 31(4): 12:112:34. [Online]. Available: http://doi.acm.org/10.1145/2556583.CrossRefGoogle Scholar
52. Pradeep, P., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A. & Salem, K. (2007). Adaptive control of virtualized resources in utility computing environments. In Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, ser. EuroSys ’07. New York, NY, USA: ACM, pp. 289302. [Online]. Available: http://doi.acm.org/10.1145/1272996.1273026.Google Scholar
53. Zhan, J., Wang, L., Li, X., Shi, W., Weng, C., Zhang, W. & Zang, X. (2013). Cost-aware cooperative resource provisioning for heterogeneous workloads in data centers. IEEE Transactions on Computers 62(11): 21552168.CrossRefGoogle Scholar
54. Iosup, A., Ostermann, S., Yigitbasi, M., Prodan, R., Fahringer, T. & Epema, D.H.J. (2011). Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Transactions on Parallel and Distributed Systems 22(6): 931945.CrossRefGoogle Scholar
55. Zhuravlev, S., Blagodurov, S. & Fedorova, A. (2010). Addressing shared resource contention in multicore processors via scheduling. SIGPLAN Notices 45(3): 129142. [Online]. Available: http://doi.acm.org/10.1145/1735971.1736036.CrossRefGoogle Scholar
56. Gelenbe, E. & Lent, R. (2013). Optimising server energy consumption and response time. Theoretical and Applied Informatics 24(4): 257270.Google Scholar
57. Tantawi, A.N. & Towsley, D. (1985). Optimal static load balancing in distributed computer systems. Journal of the ACM 32(2): 445465.CrossRefGoogle Scholar
58. Kim, C. & Kameda, H. (1992). An algorithm for optimal static load balancing in distributed computer systems. IEEE Transactions on Computers 41(3): 381384.Google Scholar
59. Kameda, H., Li, J., Kim, C. & Zhang, Y. (2011). Optimal Load Balancing in Distributed Computer Systems. London, UK: Springer.Google Scholar
60. Wolff, J.J. (2001). Dynamic load balancing of a network of client and server computers. U.S. Patent 6,185,601.Google Scholar
61. Rimal, B.P., Choi, E. & Lumb, I. (2009). A taxonomy and survey of cloud computing systems. In Fifth International Joint Conference on INC, IMS and IDC, 2009. (NCM’09). IEEE, pp. 4451.CrossRefGoogle Scholar
62. Zhang, Z. & Zhang, X. (2010). A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation. In 2010 2nd International Conference on Industrial Mechatronics and Automation (ICIMA), vol. 2. IEEE, pp. 240243.CrossRefGoogle Scholar
63. Tian, W., Zhao, Y., Zhong, Y., Xu, M. & Jing, C. (2011). A dynamic and integrated load-balancing scheduling algorithm for cloud datacenters. In 2011 IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), IEEE, pp. 311315.CrossRefGoogle Scholar
64. Zhu, X., Qin, X. & Qiu, M. (2011). QoS-aware fault-tolerant scheduling for real-time tasks on heterogeneous clusters. IEEE Transactions on Computers 60(6): 800812.Google Scholar
65. Topcuouglu, H., Hariri, S. & you Wu, M. (2002). Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems 13(3): 260274. [Online]. Available: http://dx.doi.org/10.1109/71.993206 CrossRefGoogle Scholar
66. Sih, G. & Lee, E. (1993). A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures. IEEE Transactions on Parallel and Distributed Systems 4(2): 175187.CrossRefGoogle Scholar
67. Kwok, Y.-K. & Ahmad, I. (1996). Dynamic critical-path scheduling: An effective technique for allocating task graphs to multiprocessors. IEEE Transactions on Parallel and Distributed Systems 7(5): 506521.CrossRefGoogle Scholar
68. Hou, E., Ansari, N. & Ren, H. (1994). A genetic algorithm for multiprocessor scheduling. IEEE Transactions on Parallel and Distributed Systems 5(2): 113120.CrossRefGoogle Scholar
69. Chen, W. & Zhang, J. (2009). An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 39(1): 2943.CrossRefGoogle Scholar
70. Pandey, S., Linlin, W., Guru, S. & Buyya, R. (2010). A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In 2010 24th IEEE International Conference on Advanced Information Networking and Applications (AINA), pp. 400407.CrossRefGoogle Scholar
71. Gelenbe, E. & Fourneau, J. (1999). Random neural networks with multiple classes of signals. Neural Computation 11(4): 953963.CrossRefGoogle ScholarPubMed
72. Zaman, S. & Grosu, D. (2011). A combinatorial auction-based dynamic vm provisioning and allocation in clouds. In 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), pp. 107114.CrossRefGoogle Scholar
73. Lin, C. & Lu, S. (2011). Scheduling scientific workflows elastically for cloud computing. In 2011 IEEE International Conference on Cloud Computing (CLOUD), pp. 746747.CrossRefGoogle Scholar
74. Moreno, I.S., Garraghan, P., Townend, P. & Xu, J. (2014). Analysis, modeling and simulation of workload patterns in a large-scale utility cloud. IEEE Transactions on Cloud Computing 2(2): 208221.CrossRefGoogle Scholar
75. Palanisamy, B., Singh, A. & Liu, L. (2015). Cost-effective resource provisioning for MapReduce in a cloud. IEEE Transactions on Parallel and Distributed Systems 26(5): 12651279.CrossRefGoogle Scholar
76. Bhatti, N. & Friedrich, R. (1999). Web server support for tiered services. IEEE Network 13(5): 6471.CrossRefGoogle Scholar
77. Song, Y., Sun, Y. & Shi, W. (2013). A two-tiered on-demand resource allocation mechanism for vm-based data centers. IEEE Transactions on Services Computing 6(1): 116129.CrossRefGoogle Scholar
78. Gelenbe, E., Lent, R. & Douratsos, M. (2012). Choosing a local or remote cloud. In Second Symposium on Network Cloud Computing and Applications (NCCA 2012), London, UK, 3–4 December 2012. IEEE Computer Society, pp. 2530. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/NCCA.2012.16.CrossRefGoogle Scholar
79. Zhang, Q., Zhani, M., Boutaba, R. & Hellerstein, J. (2014). Dynamic heterogeneity-aware resource provisioning in the cloud. IEEE Transactions on Cloud Computing 2(1): 1428.CrossRefGoogle Scholar
80. Gelenbe, E., Lent, R. & Xu, Z. (2001). Design and performance of cognitive packet networks. Performance Evaluation 46(2–3): 155176.CrossRefGoogle Scholar
81. Gelenbe, E., Lent, R., Montuori, A. & Xu, Z. (2000). Towards networks with cognitive packets. In Proceedings of 8th International Symposium Modeling, Analysis and Simulation of Computer and Telecommunication Systems (IEEE MASCOTS), San Francisco, CA, USA, pp. 312.Google Scholar
82. Gelenbe, E., Lent, R., Montuori, A. & Xu, Z. (2002). Cognitive packet networks: QoS and performance. In Proceedings of the IEEE MASCOTS Conference, Ft. Worth, TX, USA, pp. 312 (Opening Keynote Paper).Google Scholar
83. Gelenbe, E. (2004). Cognitive packet network. In U.S. Patent 6,804,201.Google Scholar
84. Gelenbe, E., Gellman, M., Lent, R., Liu, P. & Su, P. (2004). Autonomous smart routing for network QoS. In Proceedings of the First International Conference on Autonomic Computing, New York, NY, USA, pp. 232239. [Online]. Available: http://csdl.computer.org/comp/proceedings/icac/2004/2114/00/21140232abs.htm.Google Scholar
85. Sakellari, G. & Gelenbe, E. (2010). Demonstrating cognitive packet network resilience to worm attacks. In Proceedings of the 17th ACM Conference on Computer and Communications Security (CCS 2010), Chicago, IL, USA, 4–8 October 2010, pp. 636638. [Online]. Available: http://doi.acm.org/10.1145/1866307.1866380.Google Scholar
86. Gelenbe, E., Liu, P. & Laine, J. (2006). Genetic algorithms for route discovery. IEEE Transactions on Systems, Man and Cybernetics B 36(6): 12471254.CrossRefGoogle ScholarPubMed
87. Gelenbe, E. & Gellman, M. (2007). Can routing oscillations be good? the benefits of route-switching in self-aware networks. In 15th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2007), 24–26 October 2007, Istanbul, Turkey, pp. 343352. [Online]. Available: http://dx.doi.org/10.1109/MASCOTS.2007.13.CrossRefGoogle Scholar
88. Gelenbe, E. & Kazhmaganbetova, Z. (2014). Cognitive packet network for bilateral asymmetric connections. IEEE Transactions on Industrial Informatics 10(3): 17171725. [Online]. Available: http://dx.doi.org/10.1109/TII.2014.2321740.CrossRefGoogle Scholar
89. Gelenbe, E. & Kazhmaganbetova, Z. (2014). Cognitive packet network for QoS adaptation of asymmetric connections. In 2014 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 184189.Google Scholar
90. Gelenbe, E. (1989). Réseaux stochastiques ouverts avec clients négatifs et positifs et réseaux neuronaux. Comptes-Rendus de l'Acadmie des Sciences Paris 309, Série II: 979982.Google Scholar
91. Gelenbe, E. (1989). Random neural networks with negative and positive signals and product form solution. Neural Computation 1(4): 502510.CrossRefGoogle Scholar
92. Gelenbe, E. & Timotheou, S. (2008). Random neural networks with synchronized interactions. Neural Computation 20(9): 23082324. [Online]. Available: http://dx.doi.org/10.1162/neco.2008.04-07-509.CrossRefGoogle ScholarPubMed
93. Wang, L. & Gelenbe, E. (2016). Real-time traffic over the cognitive packet network. In Proceedings of 23rd International Science Conference on Computer Networks (CN2016). “Official Distinction Award” at the 23th Computer Network Conference, Poland.Google Scholar
94. Wang, L. & Gelenbe, E. (2015). Demonstrating voice over an autonomic network. In 2015 IEEE International Conference on Autonomic Computing, Grenoble, France, 7–10 July 2015, pp. 139140. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/ICAC.2015.14.CrossRefGoogle Scholar
95. Brun, O., Wang, L. & Gelenbe, E. (2016). Big data for autonomic intercontinental overlays. IEEE Journal on Selected Areas in Communications 34(3): 575583.CrossRefGoogle Scholar
96. Wang, L. & Gelenbe, E. (2015). Adaptive dispatching of tasks in the cloud. IEEE Transactions on Cloud Computing 1(1): 1–1.CrossRefGoogle Scholar
97. Gelenbe, E. (1990). Stability of the random neural network model. Neural Computation 2(2): 239247.CrossRefGoogle Scholar
98. Gelenbe, E. & Timotheou, S. (2008). Synchronized interactions in spiked neuronal networks. The Computer Journal 51(6): 723730.CrossRefGoogle Scholar
99. Demichelis, C. & Chimento, P. (2002). Ip packet delay variation metric for ip performance metrics (ippm). In https://www.ietf.org/rfc/rfc3393.txt. The Internet Society.Google Scholar
100. Gelenbe, E. (2009). Steps toward self-aware networks. Communications of the ACM 52(7): 6675. [Online]. Available: http://doi.acm.org/10.1145/1538788.1538809.CrossRefGoogle Scholar
101. Gelenbe, E. & Wang, L. (2015). Tap: A task allocation platform for the EU FP7 PANACEA project. In The proceedings of the EU Projects Track.Google Scholar
102. Wang, L. & Gelenbe, E. (2015). Experiments with smart workload allocation to cloud servers. In 2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA), pp. 3135.CrossRefGoogle Scholar
103. Gelenbe, E. (2000). The first decade of g-networks. European Journal of Operational Research 126(2): 231232.CrossRefGoogle Scholar
104. Gelenbe, E. (2003). Sensible decisions based on QoS. Computational Management Science 1(1): 114.CrossRefGoogle Scholar
109. Wang, L., Brun, O. & Gelenbe, E. (2016). Adaptive workload distribution for local and remote clouds. In Proceedings of IEEE International Conference on SYSTEMS, MAN, AND CYBERNETICS (SMC2016), Budapest, Hungary.Google Scholar
110. Sutton, R.S. & Barto, A.G. (1998). Reinforcement learning: an introduction. London, UK: MIT Press.Google Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

THE RANDOM NEURAL NETWORK FOR COGNITIVE TRAFFIC ROUTING AND TASK ALLOCATION IN NETWORKS AND THE CLOUD
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

THE RANDOM NEURAL NETWORK FOR COGNITIVE TRAFFIC ROUTING AND TASK ALLOCATION IN NETWORKS AND THE CLOUD
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

THE RANDOM NEURAL NETWORK FOR COGNITIVE TRAFFIC ROUTING AND TASK ALLOCATION IN NETWORKS AND THE CLOUD
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *