Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T02:05:56.240Z Has data issue: false hasContentIssue false

Typical values of Rietveld instrument profile coefficients

Published online by Cambridge University Press:  05 March 2012

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616
Joel Reid
Affiliation:
International Centre for Diffraction Data, 12 Campus Blvd., Newtown Square, Pennsylvania 19073
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

GSAS instrument parameters are tabulated for a variety of laboratory and synchrotron diffractometers to give users an idea of the typical ranges of profile parameters when they generate their own instrument parameter files. For modern high-resolution laboratory diffractometers, the parameters fall in the ranges 0<U<3, V=0, 0<W<4, 1<X<3, 0<Y<3, 1<asym<3, and 0<S/L<0.03. For synchrotron diffractometers, the parameters fall in the ranges 0<U<1.2, −1<V<0, 0<W<1, 0<X<1, 0<Y<1, 0<asym<0.5, 0<S/L<0.001, and 0<H/L<0.007. FULLPROF equivalents are also reported. The factors which are convoluted together to generate the instrument profile are described.

Type
Crystallography Education
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caglioti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum.NUINAO 3, 223228.10.1016/0369-643X(58)90029-XGoogle Scholar
Cheary, R. W. and Cline, J. P. (1995). “An analysis of the effect of different instrumental conditions on the shapes of X-ray line profiles,” Adv. X-Ray Anal.AXRAAA 39, 7582.Google Scholar
Cheary, R. W. and Coelho, A. (1992). “A fundamental parameters approach to X-ray line profile fitting,” J. Appl. Crystallogr.JACGAR 25, 109121.10.1107/S0021889891010804CrossRefGoogle Scholar
Cranswick, L. M. D. (2008). Powder Diffraction: Theory and Practice, edited by Dinnebier, R. E. and Billinge, S. J. L. (RSC, Cambridge), pp. 134165.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr.JACGAR 27, 892900.10.1107/S0021889894004218CrossRefGoogle Scholar
Hartwig, J., Hölzer, G., Wolf, J., and Förster, E. (1993). “Remeasurement of the profile of the characteristic Cu K α emission line with high precision and accuracy,” J. Appl. Crystallogr.JACGAR 26, 539548.10.1107/S0021889893000160CrossRefGoogle Scholar
Howard, C. J. (1982). “The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians,” J. Appl. Crystallogr.JACGAR 15, 615620.10.1107/S0021889882012783CrossRefGoogle Scholar
Kern, A. (2008). Principles and Applications of Powder Diffraction, edited by Clearfield, A., Reibenspies, J., and Bhuvanesh, N. (Wiley, Chichester, U.K.), pp. 158198.Google Scholar
Klug, H. P. and Alexander, L. E. (1974). X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York).Google Scholar
Langford, J. I., Louër, D., and Scardi, P. (2000). “Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting,” J. Appl. Crystallogr.JACGAR 33, 964974.10.1107/S002188980000460XGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report No. LAUR 86-748) (Los Alamos National Laboratory, Los Alamos, NM).Google Scholar
Le Bail, A. (2008). Powder Diffraction: Theory and Practice, edited by Dinnebier, R. E. and Billinge, S. J. L. (RSC, Cambridge), pp. 134165.10.1039/9781847558237-00134CrossRefGoogle Scholar
Masson, O., Dooryhee, E., and Fitch, A. N. (2003). “Instrument line-profile synthesis in high-resolution synchrotron powder diffraction,” J. Appl. Crystallogr.JACGAR 36, 286294.10.1107/S0021889803001031CrossRefGoogle Scholar
Riello, P., Fagherazzi, G., Clemente, D., and Canton, P. (1995). “X-ray Rietveld analysis with a physically based background,” J. Appl. Crystallogr.JACGAR 28, 115120.10.1107/S002188989401037XGoogle Scholar
Rietveld, H. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” IUCR Newsl.IUCNEB 26, 1219.Google Scholar
Scardi, P. (2008). Powder Diffraction: Theory and Practice, edited by Dinnebier, R. E. and Billinge, S. J. L. (RSC, Cambridge), pp. 376413.10.1039/9781847558237-00376CrossRefGoogle Scholar
Scardi, P. and Leoni, M. (2001). “Diffraction line profiles for polydisperse crystalline systems,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 57, 604613.10.1107/S0108767301008881CrossRefGoogle ScholarPubMed
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr.JACGAR 32, 281289.10.1107/S0021889898006001Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr.JACGAR 20, 7983.10.1107/S0021889887087090Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr.JACGAR 34, 210213.10.1107/S0021889801002242CrossRefGoogle Scholar
van Laar, B. and Yelon, W. B. (1984). “The peak in neutron powder diffraction,” J. Appl. Crystallogr.JACGAR 17, 4754.10.1107/S0021889884011006CrossRefGoogle Scholar
Warren, B. E. (1990). X-Ray Diffraction (Dover, New York), pp. 251254.Google Scholar
Wikipedia. (2010). “Convolution,” ⟨http://en.wikipedia.org/wiki/Convolution⟩.Google Scholar
Young, R. A. (1993). The Rietveld Method, edited by Young, R. A. (Oxford University Press, Oxford), pp. 710.CrossRefGoogle Scholar
Young, R. A. and Wiles, D. B. (1982). “Profile shape functions in Rietveld refinements,” J. Appl. Crystallogr.JACGAR 15, 430438.10.1107/S002188988201231XCrossRefGoogle Scholar