Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T16:43:19.189Z Has data issue: false hasContentIssue false

In situ X-ray diffraction analysis of Pb(Zr0.52Ti0.48)O3 phase transition in CoFe2O4/Pb(Zr0.52Ti0.48)O3 2-2-type bilayer films

Published online by Cambridge University Press:  06 March 2012

Ji-Ning Wang
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
Wei-Li Li
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
Xiao-Liang Li
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
W. D. Fei*
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
*
a)Author to whom correspondence should be addressed. Electronic mail: wdfei@hit.edu.cn

Abstract

A 2-2-type nanostructure bilayer film of CoFe2O4/Pb(Zr0.52Ti0.48)O3 was successfully prepared on the (111)Pt/Ti/SiO2/Si substrate. The Pb(Zr0.52Ti0.48)O3 layer in the bilayer film is (111) oriented and is a mixture of tetragonal and monoclinic phases. The results from an in situ X-ray diffraction analysis of the multiferroic bilayer film under statistic magnetic field indicate that the monoclinic-tetragonal phase transition was induced by magnetostriction of the CoFe2O4 layer. A large magnetoelectric effect was obtained probably because of the different polarization directions of the tetragonal and monoclinic phases.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahart, M., Somayazulu, M., Cohen, R. E., Ganesh, P., Dera, P., Mao, H. K., Hemley, R. J., Ren, Y., Liermann, P., and Wu, Z. G. (2008). “Origin of morphotropic phase boundaries in ferroelectrics,” Nature (London)NATUAS 451, 545548.10.1038/nature06459CrossRefGoogle ScholarPubMed
Deng, C. Y., Zhang, Y., Ma, J., Lin, Y. H., and Nan, C. W. (2008). “Magnetoelectric effect in multiferroic heteroepitaxial BaTiO3–NiFe2O4 composite thin films,” Acta Mater.ACMAFD 56, 405412.10.1016/j.actamat.2007.10.004CrossRefGoogle Scholar
Frantti, J., Lappalainen, J., Eriksson, S., Ivanov, S., Lantto, V., Nishio, S., Kakihana, M., and Rundlöf, H. (2001). “Neutron diffraction studies of Pb(ZrxTi1−x)O3 ceramics,” FerroelectricsFEROA8 261, 193198.10.1080/00150190108216284CrossRefGoogle Scholar
He, H. C., Ma, J., Li, Y. H., and Nan, C. W. (2008a). “Influence of relative thickness on multiferroic properties of bilayered Pb(Zr0.52Ti0.48)O3–CoFe2O4 thin films,” J. Appl. Phys.JAPIAU 104, 114114-6.10.1063/1.3035851CrossRefGoogle Scholar
He, H. C., Ma, J., Wang, J., and Nan, C. W. (2008b). “Orientation-dependent multiferroic properties in Pb(Zr0.52Ti0.48)O3–CoFe2O4 nanocomposite thin films derived by a sol-gel processing,” J. Appl. Phys.JAPIAU 103, 034103-5.10.1063/1.2838482CrossRefGoogle Scholar
He, H. C., Zhou, J. P., Wang, J., and Nan, C. W. (2006). “Multiferroic Pb(Zr0.52Ti0.48)O3–Co0.9Zn0.1Fe2O4 bilayer thin films via a solution processing,” Appl. Phys. Lett.APPLAB 89, 052904-3.10.1063/1.2269705CrossRefGoogle Scholar
Levin, L., Slutsker, J., Li, J. H., Tan, Z. P., and Roytburd, A. L. (2007). “Accommodation of transformation strains in transverse multiferroic nanostructures CoFe2O4–PbTiO3,” Appl. Phys. Lett.APPLAB 91, 062912-3.10.1063/1.2768890CrossRefGoogle Scholar
Liu, G., Nan, C. W., and Sun, J. (2006). “Coupling interaction in nanostructured piezoelectric/magnetostrictive multiferroic complex films,” Acta Mater.ACMAFD 54, 917925.10.1016/j.actamat.2005.10.020CrossRefGoogle Scholar
Liu, G., Nan, C. W., Xu, Z. K., and Chen, H. (2005). “Coupling interaction in multiferroic BaTiO3–CoFe2O4 nanostructures,” J. Phys. DJPAPBE 38, 23212326.10.1088/0022-3727/38/14/005CrossRefGoogle Scholar
Ragini, R. R., Mishra, S. K., and Pandey, D. (2002). “Room temperature structure of Pb(ZrxTi1−x)O3 around the morphotropic phase boundary region: A Rietveld study,” J. Appl. Phys.JAPIAU 92, 32663274.10.1063/1.1483921CrossRefGoogle Scholar
Soares, M. R., Senos, A. M. R., and Mantas, P. Q. (2000). “Phase coexistence region and dielectric properties of PZT ceramics,” J. Eur. Ceram. Soc.JECSER 20, 321334.10.1016/S0955-2219(99)00170-3CrossRefGoogle Scholar
Wan, J. G., Wang, X. W., Wu, Y. J., Zeng, M., Wang, Y., Jiang, H., Zhou, W. Q., Wang, G. H., and Liu, J. -M. (2005). “Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3 composite thin films derived by a sol-gel process,” Appl. Phys. Lett.APPLAB 86, 122501-3.10.1063/1.1889237CrossRefGoogle Scholar
Yang, F. and Fei, W. D. (2005). “Evaluation of texture in Pb(Zr0.52Ti0.48)O3 films prepared by sol-gel route,” Key Eng. Mater.KEMAEY 280–283, 857860.10.4028/www.scientific.net/KEM.280-283.857Google Scholar
Zheng, H., Wang, J., Lofland, S. E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S. R., Ogale, S. B., Bai, F., Viehland, D., Jia, Y., Schlom, D. G., Wuttig, M., Roytburd, A., and Ramesh, R. (2004). “Multiferroic BaTiO3–CoFe2O4 nanostructures,” ScienceSCIEAS 303, 661663.10.1126/science.1094207CrossRefGoogle ScholarPubMed
Zhou, J. P., He, H. C., Shi, Z., and Nan, C. W. (2006). “Magnetoelectric CoFe2O4/Pb(Zr0.52Ti0.48)O3 double-layer thin film prepared by pulsed-laser deposition,” Appl. Phys. Lett.APPLAB 88, 013111-3.10.1063/1.2162262Google Scholar