Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-25T08:47:05.793Z Has data issue: false hasContentIssue false

Crystal structures of lanthanide terephthalate tetrahydrate, R2(C8H4O4)3(H2O)4, R = La–Er

Published online by Cambridge University Press:  24 February 2022

Emma L. Markun
Affiliation:
North Central College, 131 S. Loomis St., Naperville, IL 60540, USA
James A. Kaduk*
Affiliation:
North Central College, 131 S. Loomis St., Naperville, IL 60540, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

The crystal structures of 11 lanthanide terephthalate tetrahydrates have been refined using laboratory X-ray powder diffraction data and optimized using density functional techniques. The lattice parameters and R–O bonds exhibit expected trends based on the cation size. The R–O bond distances in the Rietveld-refined structures are similar. However, in the density functional theory (DFT)-optimized structures, the bond distances break into two distinct groups, longer and shorter R–O bonds. This indicates that the bond distance restraints imposed upon the refined structures may have a greater impact than is expected from their weights. The aromatic carboxyl groups were not completely planar, but it is known that the carboxyl groups can rotate to accommodate hydrogen bonding and coordination to the metal. Both water molecules coordinated to the lanthanides act as hydrogen bond donors, but only one of the three unique carboxyl groups acts as an acceptor.

Type
Technical Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model (IUCr Monographs on Crystallography 12, Oxford University Press, New York).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Bushmarinov, I. (2018). ICDD Grant-in-Aid; PDF entry 00-069-1206.Google Scholar
Daiguebonne, C., Kerbellec, N., Guillou, O., Bünzil, J.-C., Gumy, F., Catala, L., Mallah, T., Audebrand, N., Gérault, Y., and Bernot, K. (2008). “Structural and luminescent properties of micro- and nanosized particles of lanthanide terephthalate coordination polymers,” Inorg. Chem. 47, 37003708.CrossRefGoogle ScholarPubMed
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Furukawa, H., Cordova, K. E., O'Keeffe, M., and Yaghi, O. M. (2013). “The chemistry and applications of metal-organic frameworks,” Science 341, 1230444-11230444-12.CrossRefGoogle Scholar
Grishko, A. Y., Utochnikova, V. V., Averin, A. A., Mironov, A. V., and Kuzmina, N. P. (2015). “Unusual luminescence properties of heterometallic REE terephthalates,” Eur. J. Inorg. Chem. 2015, 16601664.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Kaduk, J. A., Golab, J. T., and Leusen, F. J. J. (1998). “The crystal structures of trimellitic anhydride and two of its solvates,” Cryst. Eng. 1, 277290.CrossRefGoogle Scholar
Khudoleeva, V. Y., Utochnikova, V. V., Kalyakina, A. S., Deygen, I. M., Shiryaev, A. A., Marciniak, L., Lebedev, V. A., Roslyakov, I. V., Garshev, A. V., Lepnev, L. S., Schepers, U., Brase, S., and Kuzmina, N. P. (2017). “Surface modified EuxLa1-xF3 nanoparticles as luminescent biomarkers: still plenty of room at the bottom,” Dyes Pigm. 143, 348355.CrossRefGoogle Scholar
Kozub, A. L., Shick, A. B., Maca, F., Kolorenc, J., and Lichtenstein, A. I. (2016). “Electronic structure and magnetism of samarium and neodymium adatoms on free-standing graphene,” arXiv:1609,02725v1.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.CrossRefGoogle Scholar
Louër, D. and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powder Diffr. 29, S7S12.CrossRefGoogle Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., and Wood, P. A. (2020). “Mercury 4.0: from visualization to design and prediction,” J. Appl. Crystallogr. 53, 226235.CrossRefGoogle ScholarPubMed
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).Google Scholar
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. Sect. B: Cryst. Eng. Mater. 74, 239252. doi:10.1107/S2052520618002330.CrossRefGoogle ScholarPubMed
Serre, C., Millange, F., Marrot, J., and Ferey, G. (2002). “Hydrothermal synthesis, structure determination and thermal behavior of new three-dimensional europium terephthalates: MIL-51LT,HT and MIL-52 or Eu2n(OH)x(H2O)y(O2C-C6H4-CO2)z (n=III, III, II; x=4, 0, 0; y=2, 0, 0; z=1,1,2),” Chem. Mater. 2002(14), 24092415.CrossRefGoogle Scholar
Shannon, R. D. and Prewitt, C. T. (1969). “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. B 25, 925946.CrossRefGoogle Scholar
Sherif, F. G. (1970). “Heavy metal terephthalates,” Ind. Eng. Chem. Prod. Res. Develop. 9, 408412.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle Scholar
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
Van de Streek, J. and Neumann, M. (2010). “Validation of experimental molecular crystal structures with dispersion-corrected density functional theory,” Acta Crystallogr. Sect. B: Struct. Sci. 66, 544558.CrossRefGoogle ScholarPubMed
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.CrossRefGoogle Scholar
Wang, Q. and Astruc, D. (2020). “State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis,” Chem. Rev. 120, 14381511.CrossRefGoogle ScholarPubMed
Zehnder, R. A., Renn, R. A., Pippin, E., Zeller, M., Wheeler, K. A., Carr, J. A., Fontaine, N., and McMullen, N. C. (2011). “Network dimensionality and ligand flexibility in lanthanide terephthalate hydrates,” J. Mol. Struct. 985, 109119.CrossRefGoogle Scholar
Zhu, M., Fu, W., and Zou, G. (2012). “Urothermal synthesis of an unprecedented pillar-layered metal–organic framework,” J. Coord. Chem. 65, 41084114.CrossRefGoogle Scholar
Supplementary material: File

Markun and Kaduk supplementary material

Markun and Kaduk supplementary material

Download Markun and Kaduk supplementary material(File)
File 1.6 MB