Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-21T17:16:24.309Z Has data issue: false hasContentIssue false

Crystal structure of metolazone, C16H16ClN3O3S

Published online by Cambridge University Press:  28 August 2019

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616, USA North Central College, 131 S. Loomis St., Naperville, Illinois 60540, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

The crystal structure of metolazone has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Metolazone crystallizes in space group P-1 (#2) with a = 8.1976(5), b = 14.4615(69), c = 16.0993(86) Å, α = 115.009(18), β = 90.096(7), γ = 106.264(4)°, V = 1644.52(9) Å3, and Z = 4. The broad (02-1) peak at 3.42° 2θ indicates stacking faults along this direction. The crystal structure consists of alternating polar and hydrocarbon layers parallel to the ac-plane. Only one of the sulfonamide groups acts as a hydrogen bond donor. Both ring nitrogen atoms act as hydrogen bond donors, but one forms an N–H···N hydrogen bond, while the other participates in an N–H···O bond. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™, to replace entry 00-066-1624.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.Google Scholar
Burger, A. (1975). “Dissolution and polymorphism of metolazone,” Arzneimittelforschung. 25, 2427.Google Scholar
Dassault Systèmes (2019). Materials Studio 2019R1 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H., and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.Google Scholar
Favre-Nicolin, V., and Černý, R. (2002). “FOX, “Free objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32(2), 6371.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals-the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 72, 171179.Google Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta. 44, 129138.Google Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.Google Scholar
Kresse, G., and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.Google Scholar
Kuhnert-Brandstätter, M., and Burger, A. (1975). “Beitrag zur thermischen analyse optischer antipoden: N-benzoyl-3-methoxy-4-hydroxy-phenylalanin und metolazon,” Microchim. Acta. 63, 549561.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15(5), 427432.Google Scholar
Louër, D., and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powder Diffr. 29, S7S12.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0–new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).Google Scholar
MDI (2018). Jade 9.8 (Materials Data Inc., Livermore, CA).Google Scholar
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.Google Scholar
Shetty, B. V. (1967). Tetrahydro-halo-sulfamyl-quinazolinones. US Patent US3458513A.Google Scholar
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Toby, B. H., and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). http://hirshfeldsurface.net.Google Scholar
van de Streek, J., and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 70(6), 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.Google Scholar
Wavefunction, Inc (2018). Spartan ’18 Version 1.2.0 (Wavefunction Inc, Irvine, CA, USA).Google Scholar
Wheatley, A. M., and Kaduk, J. A. (2019). “Crystal structures of ammonium citrates,” Powder Diffr. 34, 3543.Google Scholar
Zhang, Y., Hui, X., and Wang, R. (2014). “Study on polymorphism of metolazone tablets,” Northwest Pharm. J. 29, 514516.Google Scholar
Supplementary material: File

Kaduk et al. supplementary material

Kaduk et al. supplementary material 1

Download Kaduk et al. supplementary material(File)
File 2.9 MB
Supplementary material: File

Kaduk et al. supplementary material

Kaduk et al. supplementary material 2

Download Kaduk et al. supplementary material(File)
File 8.8 KB