Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T21:35:26.729Z Has data issue: false hasContentIssue false

X-ray powder reference patterns for magnetoplumbite-like compounds, (Bax Sr1−x )Ti6Co6O19 (x = 0.2, 0.4, 0.6, 0.8)

Published online by Cambridge University Press:  10 September 2015

W. Wong-Ng*
Affiliation:
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
G. Liu
Affiliation:
Science Research Institute, China University of Geosciences, Bejing 100083, China
J. A. Kaduk
Affiliation:
BCPS, Illinois Institute of Technology, Chicago, Illinois 60616
*
a) Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

Abstract

X-ray reference powder patterns and crystal structures have been determined for a series of titanium- and cobalt-containing layered alkaline-earth compounds with nominal formula (Bax Sr1−x )Ti6Co6O19 (x = 0.2, 0.4, 0.6, 0.8). Structural isomorphism of the title compounds with the hexagonal ferrite BaFe12O19 and magnetoplumbite (PbFe12O19), was confirmed. The (Bax Sr1−x )Ti6Co6O19 series crystallize in the space group of P63 /mmc (No. 194) and Z = 2. The lattice parameters range from a = 5.90729(6) Å, c = 23.2378(3) Å, and V = 702.27(2) Å3 for x = 0.2 to a = 5.914 93(9), c = 23.3391(5) Å, and V = 707.15(2) Å3 with x = 0.8. The structure consists of alternating spinel S-block and R-blocks. The tetrahedral sites within the spinel S-blocks are occupied with only Co2+, while Ti4+ is mainly located in the octahedral sites of the spinel S-blocks and in the face-sharing octahedral site of the R-blocks. A bipyramidal mixed Co/Ti site was confirmed in the R-block of the structure. Powder X-ray diffraction patterns of this series of compounds have been submitted to be included in the Powder Diffraction File.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.CrossRefGoogle Scholar
Brown, I. D., and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr., B 41, 244247.Google Scholar
Cabañas, M. V., González-Calbet, J. M., Rodríguez-Carvajal, J., and Vallet-Regí, M. (1994). “The solid solution BaFe12−2xCoxTixO19 (0 ≤ x ≤ 6): cationic distribution by neutron diffraction,” J. Solid State Chem., 111, 229237.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr., 27, 892900.CrossRefGoogle Scholar
Graetsch, H. and Gebert, W. (1994). “Positional and thermal disorder in the trigonal bipyramid of magnetoplumbite structure type SrGa12O19 ,” Z. Kristallogr., 209, 338342.Google Scholar
Graetsch, H. and Gebert, W. (1995). “Cation distribution in magnetoplumbite type SrTi6Co6O19 ,” Z. Kristallogr., 210, 913.Google Scholar
Grebille, D., Lambert, S., Bouree, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr., 37, 823831.CrossRefGoogle Scholar
Howard, C. J. (1982). “The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians,” J. Appl. Crystallogr., 15(6), 615620.Google Scholar
Hu, Y. F., Si, W. D., Sutter, E., and Li, Q. (2005). “ In situ growth of c-axis-oriented Ca3Co4O9 thin films on Si(100),” Appl. Phys. Lett., 86, 082103.Google Scholar
Iyi, N., Takekawa, S., and Kimura, S. (1990). “Refinement of the structure of lead hexaaluminate (PbAl12O19),” J. Solid State Chem., 85, 318320.Google Scholar
Kimura, K., Ohgaki, M., Tanaka, K., Morikawa, H., and Marumo, F. (1990). “Study of the bipyramidal site in magnetoplumbite-like compounds, SrM12O19 (M = Al, Fe, Ga),” J. Solid State Chem., 87, 186194.CrossRefGoogle Scholar
Kojima, H. (1982) “Ferromagnetic materials,” in Ferromagnetic Materials: A Handbook on the Properties of Magnetically Ordered Substances, edited by Wohlfarth, E. P. (North-Holland, Amsterdam), Vol. 3, p. 305.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B., and Hejtmanck, J. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9 ,” Phys. Rev. B, 62, 166175.CrossRefGoogle Scholar
Mikami, M., Funahashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). “High-temperature thermoelectric properties of single-crystal Ca3Co2O6 ,” J. Appl. Phys., 94(10), 65796582.Google Scholar
Mikami, M. and Funahashi, R. (2005). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds”, J. Solid State Chem., 178, 16701674.Google Scholar
Minami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1−xBax)3Co4O9 thin films using combinatorial methods,” Appl. Surface Sci., 197, 442447.Google Scholar
Momozawa, N., Yamaguchi, Y., Takei, H., and Mita, M. (1985). “Magnetic structure of (Ba1−xSrx)Zn2Fe12O22 (x = 0–1.0),” J. Phys. Soc. Japan, 54, 771780.Google Scholar
Obradors, X., Collomb, A., Pernet, M., Samaras, D., and Joubert, J. C. (1985). “X-ray analysis of the structural and dynamic proeprties of BaFe12O19 hexgonal ferrite at room temperature,” J. Solid State Chem., 56, 171181.CrossRefGoogle Scholar
Obradors, X., Solans, X., Collomb, A., Samaras, D., Rodriguez, J., Pernet, M., and Font-Altaba, M. (1988). “Crystal structure of strontium hexaferrite SrFe12O19 ,” J. Solid State. Chem., 72, 218224.Google Scholar
PDF, Powder Diffraction File (2014). Produced by International Centre for Diffraction Data, (12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273).Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr., 2, 6571.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides,” Acta Crystallogr., A32, 751767.Google Scholar
Sizov, V. A., Sizov, R. A., and Yamzin, I. I. (1968). “A new type of spin ordering in the system of hexagonal Ba2−xSrxZn2Fe12O22(Y) ferrites,” Sov. Phys. – JETP, 26, 736.Google Scholar
Smit, J. and Wijn, H. P. J. (1959). Ferrites (Philips Technical Library, Eindhoven).Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening,” J. Appl. Crystallogr., 32, 281289.Google Scholar
Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals,” Phys. Rev. B, 56, 1268512687.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 ”, J. Appl. Crystallogr., 20, 7983.Google Scholar
Townes, W. D., Fang, J. H., and Perrotta, A. J. (1967). “The crystal structure and refinement of ferromagnetic barium ferrite, BaFe12O19 ,” Z. Kristallogr., 125, 437449.Google Scholar
Wang, S., Venimadhav, A., Guo, S., Chen, K., Li, Q., Soukiassian, A., Schlom, D. G., Katz, M. B., Pan, X. Q., Wong-Ng, W., Vaudin, M. D., and Xi, X. X. (2009). “Structural and thermoelectric properties of Bi2Sr2Co2Oy thin films on LaAlO3 (100) and fused silica substrates,” Appl. Phys. Lett., 94, 022110.Google Scholar
Wong-Ng, W., McMurdie, H. F., Paretzkin, B., and Zhang, Y., Davis, K. L., Hubbard, C. R., Dragoo, A. L., and Stewart, J. M. (1987). “Standard X-ray diffraction powder patterns of sixteen ceramic phases,” Powder Diffr., 2(3), 191202.CrossRefGoogle Scholar
Wong-Ng, W., Hu, Y. F., Vaudin, M. D., He, B., Otani, M., Lowhorn, N. D., and Li, Q. (2007). “Texture and phase analysis of a Ca3Co4O9 thermoelectric film on Si (100) substrate,” J. Appl. Phys., 102(3), 33520.Google Scholar
Wong-Ng, W., Liu, G., Martin, J., Thomas, E. L., Lowhorn, N., and Kaduk, J. A. (2010). “Phase compatibility of the thermoelectric properties of compounds in the Sr-Ca-Co-O system,” J. Appl. Phys., 107, 033508.Google Scholar
Wong-Ng, W., Luo, T., Xie, W., Tang, W. H., Kaduk, J. A., Huang, Q., Yan, Y., Tang, X., and Tritt, T. (2011). “Phase diagram, crystal chemistry and thermoelectric properties of compounds in the Ca-Co-Zn-O system,” J. Solid State Chem., 184(8), 21592166.Google Scholar
Wong-Ng, W., Laws, W. J., and Yan, Y. G. (2013). “Phase diagram and crystal chemistry of the La-Ca-Co-O system,” Solid State Sci., 17, 107110.Google Scholar
Wong-Ng, W., Laws, W. J., Talley, K. R., Huang, Q., Yan, Y., Martin, J., and Kaduk, J. A. (2014). “Phase equilibria and crystal chemistry of the CaO-½Nd2O3-CoOz system at 885 °C in air,” J. Solid State Chem., 215, 128134.CrossRefGoogle Scholar