Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-zmlw7 Total loading time: 0.368 Render date: 2021-06-18T04:02:02.573Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

Published online by Cambridge University Press:  30 April 2018

S. Takajo
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 JFE Steel Corporation, Kurashiki 712, Japan
D. W. Brown
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
B. Clausen
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
G. T. Gray III
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
C. M. Knapp
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. T. Martinez
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
C. P. Trujillo
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S. C. Vogel
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Corresponding
E-mail address:

Abstract

In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residual strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. Knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Berkum, J. G. M., Deles, R., de Keijser, H. Th., and Mittemeijer, E. J. (1996). “Diffraction-line broadening due to strain fields in materials; fundamental aspects and methods of analysis,” Acta Crystallogr. A52, 730747.CrossRefGoogle Scholar
Bourke, M. A. M., Dunand, D. C., and Ustundag, E. (2002). “SMARTS a spectrometer for strain measurement in engineering materials,” Appl. Phys. A: Mater. Sci. Process. 74, 1707.CrossRefGoogle Scholar
Brown, D. W., Bernardin, J. D., Carpenter, J. S., Clausen, B., Spernjak, D., and Thopmpson, J. M. (2016). “Neutron diffraction measurements of residual stress in additively manufactured stainless steel,” Mater. Sci. Eng. A 678, 291298.CrossRefGoogle Scholar
Clendenen, R. L. and Drickamer, H. G. (1964). “The effect of pressure on the volume and lattice parameters of ruthenium and iron,” J. Phys. Chem. Solids 25, 865868.CrossRefGoogle Scholar
Frazier, W. E. (2014). “Metal additive manufacturing: a review,” Eng. Perform. 23, 19171928.CrossRefGoogle Scholar
Furmanski, J., Trujillo, C. P., Martinez, D. T., Gray, G. T. III, and Brown, E. N. (2012). “Dynamic-tensile-extrusion for investigating large strain and high strain rate behavior of polymers,” Polym. Test. 31, 10311037.CrossRefGoogle Scholar
Godet, S. and Jacques, P. J. (2015). “Beneficial influence of an intercritically rolled recovered ferritic matrix on the mechanical properties of TRIP-assisted multiphase steels,” Mater. Sci. Eng. A 645, 2027.CrossRefGoogle Scholar
Hatano, M., Kubota, Y., Shobu, T., and Mori, S. (2016). “Presence of ε-martensite as an intermediate phase during the strain-induced transformation of SUS304 stainless steel,” Philos. Mag. Lett. 96(6), 220227.CrossRefGoogle Scholar
Hordon, M. J. and Averbach, B. L. (1961). “X-ray measurements of dislocation density in deformed copper and aluminum single crystals,” Acta Metall. 9, 237246.CrossRefGoogle Scholar
Li, N., Wang, Y. D., Liu, W. J., An, Z. N., Liu, J. P., Sua, R., Li, J., and Liaw, P. K. (2014). “In situ X-ray microdiffraction study of deformation-induced phase transformation in 304 austenitic stainless steel,” Acta Mater. 64, 1223.CrossRefGoogle Scholar
Losko, S., Vogel, S. C., Reiche, H. M., and Nakotte, H. (2014). “A six-axis robotic sample changer for high-throughput neutron powder diffraction and texture measurements,” J. Appl. Crystallogr. 47, 21092112.CrossRefGoogle Scholar
Lutterotti, L., Matthies, S., and Wenk, H.-R. (1997). “Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra,” J. Appl. Phys. 81, 594600.CrossRefGoogle Scholar
Maudlin, P. J., Bingert, J. F., and Gray, G. T. III (2003). “Low-symmetry plastic deformation in BCC tantalum: experimental observations, modeling and simulations,” Int. J. Plast. 19, 483515.CrossRefGoogle Scholar
Mertinger, V., Nagy, E., and Tranta, F. (2008). “Strain-induced martensitic transformation in textured austenitic stainless steels,” Mater. Sci. Eng. A 481–482, 718722.CrossRefGoogle Scholar
Murr, L. E., Staudhammer, K. P., and Hecker, S. S. (1982). “Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part II. Microstructural study,” Metall. Trans. A 13A, 627635.CrossRefGoogle Scholar
Olson, G. B. and Cohen, M. (1975). “Kinetics of strain-induced martensitic nucleation,” Metall. Trans. A 6A, 791795.CrossRefGoogle Scholar
Parr, J. G. (1952). “The crystallographic relationship between the phases γ and ε in the system iron-manganese,” Acta Crystallogr. 5, 842843.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 65.CrossRefGoogle Scholar
Shen, Y. F., Qiu, L. N., Sun, X., Zuo, L., Liawc, P. K., and Raabe, D. (2015). “Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels,” Mater. Sci. Eng. A 636, 551564.CrossRefGoogle Scholar
Smallman, R. E. and Westmacott, K. H. (1957). “Stacking faults in face-centred cubic metals and alloys,” Philos. Mag. 2, 669683.CrossRefGoogle Scholar
Spencer, K., Embury, J. D., Conlon, K. T., Veron, M., and Brechet, Y. (2004). “Strengthening via the formation of strain-induced martensite in stainless steels,” Mater. Sci. Eng. A 387–389, 873881.CrossRefGoogle Scholar
Tiamiyu, A. A., Eskandari, M., Nezakat, M., Wang, X., Szpunar, J. A., and Odeshi, A. G. (2016). “A comparative study of the compressive behaviour of AISI 321 austenitic stainless steel under quasi-static and dynamic shock loading,” Mater. Des. 112, 309319.CrossRefGoogle Scholar
Venables, J. A. (1962). “The martensite transformation in stainless steel,” Philos. Mag. 7:73, 3544.CrossRefGoogle Scholar
Vogel, S. C., Hartig, C., Lutterotti, L., Von Dreele, R. B., Wenk, H.-R., and Williams, D. J. (2004). “Texture measurements using the new neutron diffractometer HIPPO and their analysis using the Rietveld method,” Powder Diffr. 19, 6568.CrossRefGoogle Scholar
Wenk, H.-R. (1991). “Standard project for pole-figure determination by neutron diffraction,” J. Appl. Crystallogr. 24, 920927.CrossRefGoogle Scholar
Wenk, H.-R., Lutterotti, L., and Vogel, S. (2003). “Texture analysis with the new HIPPO TOF diffractometer,” Nucl. Instrum. Methods Phys. Res. A 515, 575588.CrossRefGoogle Scholar
Wenk, H.-R., Lutterotti, L., and Vogel, S. C. (2010). “Rietveld texture analysis from TOF neutron diffraction data,” Powder Diffr. 25, 283296.CrossRefGoogle Scholar
Williamson, G. K. and Smallman, R. E. (1956). “III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum,” Philos. Mag. 1(1), 3.CrossRefGoogle Scholar
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *