Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-06T03:40:00.707Z Has data issue: false hasContentIssue false

Seasonality and genotype influence on Ilex paraguariensis cuttings rooting and bioactive compounds

Published online by Cambridge University Press:  17 August 2023

Manoela Mendes Duarte*
Affiliation:
Federal University of Paraná, Forestry and Wood Sciences Center, Prefeito Lothário Meissner Avenue, Botanical Garden, Curitiba, Brazil
Natália Saudade de Aguiar
Affiliation:
Federal University of Paraná, Forestry and Wood Sciences Center, Prefeito Lothário Meissner Avenue, Botanical Garden, Curitiba, Brazil
Mônica Moreno Gabira
Affiliation:
Federal University of Paraná, Forestry and Wood Sciences Center, Prefeito Lothário Meissner Avenue, Botanical Garden, Curitiba, Brazil
Jéssica de Cássia Tomasi
Affiliation:
Federal University of Paraná, Agricultural Sciences Sector, Funcionários Street, Juvevê, Curitiba, Brazil
Leandro Marcolino Vieira
Affiliation:
Federal University of Paraná, Agricultural Sciences Sector, Funcionários Street, Juvevê, Curitiba, Brazil
Cristiane Vieira Helm
Affiliation:
Brazilian Agricultural Research Corporation, Ribeira Road, Km 111, Parque Monte Castelo, Colombo, Brazil
Antonio Carlos Nogueira
Affiliation:
Federal University of Paraná, Forestry and Wood Sciences Center, Prefeito Lothário Meissner Avenue, Botanical Garden, Curitiba, Brazil
Ivar Wendling
Affiliation:
Brazilian Agricultural Research Corporation, Ribeira Road, Km 111, Parque Monte Castelo, Colombo, Brazil
*
Corresponding author: Manoela Mendes Duarte; Email: manu.florestal@gmail.com

Abstract

Yerba mate (Ilex paraguariensis) leaves have many compounds with proven bioactive activity; so, interest and consumption of species' products have increased globally. Here, we used 19 yerba mate genotypes from a provenance and progeny trial, yielding findings that could have significant implications for the species' vegetative propagation and genotype selection, where we indicate some potential genotypes, contributing to yerba mate silviculture and breeding programmes. We evaluated season and genotype effects on rooting of cuttings, contents of bioactive compounds and the influence of these compounds on rhizogenic process. We prepared semi-woody cuttings in four seasons; after 100 days we evaluated rooting variables. Methylxanthines (caffeine and theobromine) and monocaffeoylquinic acids contents were measured using high performance liquid chromatography, from aqueous extract of stock plant mature leaves. There was no correlation between rooting variables and evaluated compounds. Just eight genotypes presented above 70% of rooted cuttings in at least one season. Rooting variables varied between these genotypes and seasons. Caffeine and 5-caffeoylquinic acid (CQA5) significantly contributed to separated genotypes and seasons. CQA5 showed highest levels in spring. Regarding to genotypes, EC22 showed low levels of caffeine in all seasons. The great variation in compounds among genotypes indicates the possibility of breeding for chemical characteristics and raw material production for different products. Our results also indicate the importance of seasons for yerba mate vegetative propagation success and leaf compound contents.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguiar, NS, Gabira, MM, Tomasi, JC, Duarte, MM, Vieira, LM, Lavoranti, OJ and Wendling, I (2022) Productivity of clonal Ilex paraguariensis genotypes in a semi-hydroponic system is reduced by shading. Forest Science 68, 18.CrossRefGoogle Scholar
Almeida, MR, Aumond, M, Costa, CT, Schwambach, J, Ruedell, CM, Correa, LR and Fett-Neto, AG (2017) Environmental control of adventitious rooting in Eucalyptus and Populus cuttings. Trees 31, 13771390.CrossRefGoogle Scholar
Blum-Silva, CH, Chaves, VC, Schenkel, EP, Coelho, GC and Reginatto, FH (2015) The influence of leaf age on methylxanthines, total phenolic content, and free radical scavenging capacity of Ilex paraguariensis aqueous extracts. Brazilian Journal of Pharmacognosy 25, 16.CrossRefGoogle Scholar
Bracesco, N (2019) Ilex paraguariensis as a healthy food supplement for the future world. Biomedical Journal of Scientific & Technical Research 16, 1518.CrossRefGoogle Scholar
Butiuk, AP, Martos, MA, Adachi, O and Hours, RA (2016) Study of the chlorogenic acid content in yerba mate (Ilex paraguariensis St. Hil.): effect of plant fraction, processing step and harvesting season. Journal of Applied Research on Medicinal and Aromatic Plants 3, 2733.CrossRefGoogle Scholar
Cardozo Junior, EL and Morand, C (2016) Interest of mate (Ilex paraguariensis A. St.-Hil.) as a new natural functional food to preserve human cardiovascular health – a review. Journal of Functional Foods 21, 440454.CrossRefGoogle Scholar
Cardozo Junior, EL, Donaduzzi, CM, Ferrarese-Filho, O, Friedrich, JC, Gonela, A and Sturion, JA (2010) Quantitative genetic analysis of methylxanthines and phenolic compounds in mate progenies. Pesquisa Agropecuária Brasileira 45, 171177.CrossRefGoogle Scholar
Coelho, GC, Athayde, ML and Schenkel, EP (2001) Methylxanthines of Ilex paraguariensis A. St.-Hil. var. vestita Loes. and var. paraguariensis. Brazilian Journal of Pharmaceutical Sciences 37, 153158.Google Scholar
Croge, CP, Cuquel, FL and Pintro, PTM (2021) Yerba mate: cultivation systems, processing and chemical composition. A review. Scientia Agricola 78, e20190259.CrossRefGoogle Scholar
Duarte, MM (2020) Ilex paraguariensis A.St.-Hil.: Caracterização de morfotipos e genótipos para produção de compostos bioativos e propagação. PhD thesis, Federal University of Parana, Curitiba, Brazil.Google Scholar
Duarte, MM, Mireski, MC, Oliszeski, A, Wendling, I and Stuepp, CA (2019) Rooting of yerba mate cuttings with different lengths. Revista Eletrônica Científica da UERGS 5, 511.CrossRefGoogle Scholar
Duarte, MM, Tomasi, JC, Helm, CV, Amano, E, Lazzarotto, M, Godoy, RCR, Nogueira, AC and Wendling, I (2020) Caffeinated and decaffeinated mate tea: effect of toasting on bioactive compounds and consumer acceptance. Revista Brasileira de Ciências Agrárias 15, e8513.CrossRefGoogle Scholar
Duarte, MM, Gabira, MM, Tomasi, JC, Amano, E, Nogueira, AC and Wendling, I (2022) Bioactive compounds and leaf anatomy of yerba mate morphotypes. Pesquisa Agropecuária Brasileira 57, e02441.CrossRefGoogle Scholar
Gazzana, D, Pimentel, N, Lohmann, GT, Maculan, LG and Bisognin, DA (2020) Vegetative propagation of mate from shoot cuttings induced by coppicing of selected plants. Semina: Ciências Agrárias 41, 18491860.Google Scholar
Hartmann, HT, Kerster, DE, Davies, FT Jr. and Geneve, RL (2014) Plant Propagation: Principles and Practices. Boston: Prentice Hall, 927pp.Google Scholar
Helm, CV, Ruiz, HZ, Hansel, FA, Stuepp, CA and Wendling, I (2015) Efeito do solvente na extração de teobromina e cafeína em progênies de erva-mate. Colombo: Embrapa Florestas, 6p. (Comunicado Técnico 363). Available at https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1038782/efeito-do-solvente-na-extracao-de-teobromina-e-cafeina-em-progenies-de-erva-mate (Accessed 26 August 2022).Google Scholar
Krajnc, AU, Turinek, M and Ivančič, A (2013) Morphological and physiological changes during adventitious root formation as affected by auxin metabolism: stimulatory effect of auxin containing seaweed extract treatment. Agricultura 10, 1727.Google Scholar
Kratz, D, Pires, PP, Stuepp, CA and Wendling, I (2015) Produção de mudas de erva-mate por miniestaquia em substratos renováveis. Floresta 45, 609616.CrossRefGoogle Scholar
Li, SW, Xue, L, Xu, S, Feng, H and An, L (2009) Mediators, genes and signaling in adventitious rooting. The Botanical Review 75, 230247.CrossRefGoogle Scholar
Mateos, R, Baeza, G, Sarria, B and Bravo, L (2018) Improved LC-MSn characterization of hydroxycinnamic acid derivatives and flavonols in different commercial mate (Ilex paraguariensis) brands. Quantification of polyphenols, methylxanthines, and antioxidant activity. Food Chemistry 241, 232241.CrossRefGoogle Scholar
Melo, TO, Marques, FA, Wendling, I, Kopka, J, Erban, A and Hansel, FA (2020) Compostos presentes em extrato metanólico de tecido foliar de erva-mate, por meio da cromatografia gasosa acoplada à espectrometria de massas. Colombo: Embrapa Florestas, 19p. (Comunicado Técnico 458). Available at https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1125791/compostos-presentes-em-extrato-metanolico-de-tecido-foliar-de-erva-mate-por-meio-da-cromatografia-gasosa-acoplada-a-espectrometria-de-massas (Accessed 26 August 2022).Google Scholar
Pimentel, N, Lencina, KH, Kielse, P, Rodrigues, MB, Somavilla, TM and Bisognin, DA (2019) Produtividade de minicepas e enraizamento de miniestacas de clones de erva-mate (Ilex paraguariensis A. St.-Hil.). Ciência Florestal 29, 559570.CrossRefGoogle Scholar
Porfirio, S, Calado, ML, Noceda, C, Cabrita, MJ, Silva, MG, Azadie, P and Peixe, A (2016) Tracking biochemical changes during adventitious root formation in olive (Olea europaea L). Scientia Horticulturae 204, 4153.CrossRefGoogle Scholar
Rakocevic, M and Martim, SF (2011) Time series in analysis of yerba mate biennial growth modified by environment. International Journal of Biometeorology 55, 161171.CrossRefGoogle ScholarPubMed
Riachi, LG and De Maria, CAB (2017) Yerba mate: an overview of physiological effects in humans. Journal of Functional Foods 38, 308320.CrossRefGoogle Scholar
Rout, GR (2006) Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regulation 48, 111117.CrossRefGoogle Scholar
, FP (2018) Ilex paraguariensis A.St.-Hil: miniestaquia, caracterização anatômica e bioquímica e, estimativa do enraizamento por espectroscopia NIR. PhD thesis, Federal University of Parana, Curitiba, Brazil.Google Scholar
, FP, Portes, DC, Wendling, I and Zuffellato-Ribas, KC (2018) Minicutting technique of yerba mate in four seasons of the year. Ciência Florestal 28, 14311442.CrossRefGoogle Scholar
Santin, D, Wendling, I, Benedetti, EL, Morandi, D and Domingos, DM (2015) Sobrevivência, crescimento e produtividade de plantas de erva-mate produzidas por miniestacas juvenis e por sementes. Ciencia Florestal 25, 571579.CrossRefGoogle Scholar
Schubert, A, Zanin, FF, Pereira, DF and Athayde, ML (2006) Variação anual de metilxantinas totais em amostras de Ilex paraguariensis A. St. – Hil. (erva-mate) em Ijuí e Santa Maria, Estado do Rio Grande do Sul. Química Nova 29, 12331236.CrossRefGoogle Scholar
Schuhli, GS, Penteado Junior, JF and Wendling, I (2019) Descritores mínimos em cultivares de espécies florestais: uma contribuição para erva-mate. Colombo: Embrapa Florestas, 25p. (Documentos 333). Available at https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1117327/descritores-minimos-em-cultivares-de-especies-florestais-uma-contribuicao-para-erva-mate (Accessed 26 August 2022).Google Scholar
Shang, W, Wang, Z, He, S, He, D, Liu, Y and Fu, Z (2017) Research on the relationship between phenolic acids and rooting of tree peony (Paeonia suffruticosa) plantlets in vitro. Scientia Horticulturae 224, 5360.CrossRefGoogle Scholar
Shiozaki, S, Makibuchi, M and Ogata, T (2013) Indole-3-acetic acid, polyamines, and phenols in hardwood cuttings of recalcitrant-to-root wild grapes native to east Asia: Vitis davidii and Vitis kiusiana. Journal of Botany 2013, 19.CrossRefGoogle Scholar
Stuepp, CA, Bitencourt, J, Wendling, I, Koehler, HS and Zuffellato-Ribas, KC (2015) Propagação de erva-mate utilizando brotações de anelamento e decepa em matrizes de duas idades. Cerne 21, 519526.CrossRefGoogle Scholar
Stuepp, CA, Bitencourt, J, Wendling, I, Koehler, HS and Zuffellato-Ribas, KC (2017) Age of stock plants, seasons and IBA effect on vegetative propagation of Ilex paraguariensis. Revista Árvore 41, 17.Google Scholar
Tomasi, JC (2020) Bioactive Compounds of Yerba Mate According to Genotype, Nitrogen Fertigation and Drying Methods and Acceptance of Mate Tea by Consumers. PhD thesis, Federal University of Parana, Curitiba, Brazil.Google Scholar
Valduga, AT, Gonçalves, IL, Magri, E and Finzer, JRD (2019) Chemistry, pharmacology, and new trends in traditional functional and medicinal beverages. International Food Research Journal 120, 478503.CrossRefGoogle ScholarPubMed
Vieira, LM, Maggioni, RA, Tomasi, JC, Gomes, EN, Wendling, I, Helm, CV, Koehler, HS and Zuffellato-Ribas, KC (2021) Vegetative propagation, chemical composition, and antioxidant activity of yerba mate genotypes. Plant Genetic Resources-Characterization and Utilization 18, 110.Google Scholar
Wendling, I (2004) Propagação vegetativa de erva-mate (Ilex paraguariensis Saint Hilaire): estado da arte e tendências futuras. Colombo: Embrapa Florestas, 46p. (Documentos 91). Available at https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/308921 (Accessed 26 August 2022).Google Scholar
Wendling, I and Santin, D (2015) Propagação e nutrição de erva-mate. Brasília: Embrapa, 195p.Google Scholar
Wendling, I, Trueman, SJ and Xavier, A (2014) Maturation and related aspects in clonal forestry-part II: reinvigoration, rejuvenation and juvenility maintenance. New Forests 45, 473486.CrossRefGoogle Scholar
Wendling, I, Sturion, JA, Reis, CAF, Stuepp, CA and Peña, MLP (2016) Indirect and expedite assessment of Ilex paraguariensis commercial yield. Cerne 22, 241248.CrossRefGoogle Scholar
Supplementary material: File

Duarte et al. supplementary material
Download undefined(File)
File 193.2 KB
Supplementary material: File

Duarte et al. supplementary material
Download undefined(File)
File 16.9 KB
Supplementary material: File

Duarte et al. supplementary material
Download undefined(File)
File 14.4 KB
Supplementary material: File

Duarte et al. supplementary material
Download undefined(File)
File 12.7 KB