Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-17T12:37:08.754Z Has data issue: false hasContentIssue false

Intraspecific karyotypic variability among 12 Indian accessions of Momordica charantia L. (bitter gourd): a medicinally important vegetable crop

Published online by Cambridge University Press:  20 May 2024

Md Mabud Alam
Affiliation:
Plant Cytogenetics Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
Indranil Santra
Affiliation:
Plant Cytogenetics Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
Biswajit Ghosh*
Affiliation:
Plant Cytogenetics Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
*
Corresponding author: Biswajit Ghosh; Email: ghosh_b2000@yahoo.co.in

Abstract

Bitter gourd is a highly nutritious vegetable and important medicinal plant of economic importance. The present study is focused on cytogenetical characterization of 12 accessions of bitter gourd from different parts of India, aiming to differentiate their karyotypes and outline diagnostic features of the chromosomes within each accession's haploid complement. All the accessions possess 2n = 22 numbers of chromosomes. The chromosomes mainly were metacentric (16‒22 chromosomes), and the presence or absence of sub-metacentric (0‒6 chromosomes) chromosomes. The length of the chromosomes varied from 0.83 to 1.93 μm among the accessions studied. Significant differences were obtained for the seven intra-chromosomal indices and four inter-chromosomal indices among the accessions. Principal component analysis and unweighted pair group method with arithmetic mean study revealed relatively distant positioning of individuals that advocated intraspecific phylogenetic relationships and higher karyoevolutionary affinity in bitter gourd accessions. In the meiotic study, regular meiotic behaviour indicates genetic stability and a stable sexual cycle in different accessions. The percentage of pollen viability of all the studied accessions was very high (89.41–94.11%), and these accessions can be considered to be good pollinators. The results obtained will guide characterizing the elite genotypes, genotypes management and designing effective breeding programmes and crop improvement programmes.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, MM, Haque, SM and Ghosh, B (2018) Karyomorphological studies of six commercially cultivated edible cucurbits: bitter gourd, sponge gourd, ridge gourd, snake gourd, ash gourd and cucumber. Caryologia 71, 150159.CrossRefGoogle Scholar
Behera, TK, Dey, SS and Sirohi, PS (2006) Variation in ascorbic acid and carotenoid content in bitter gourd (Momordica charantia L.) genotypes. In International Conference on Biotechnology Approaches for Alleviating Malnutrition and Human Health Held. Bangalore, India (Abstract No. P21) (pp. 62).Google Scholar
Behera, TK, Dey, SS, Datta, S and Kole, C (2020) Genetic resources and genetic diversity in bitter gourd. In Kole, C, Matsumura, H and Behera, T (eds), The Bitter Gourd Genome. Switzerland: Springer, pp. 4559. https://doi.org/10.1007/978-3-030-15062-4_4CrossRefGoogle Scholar
Bharathi, LK, Munshi, AD, Chandrashekaran, S, Behera, TK, Das, AB and John, KJ (2011) Cytotaxonomical analysis of Momordica L. (Cucurbitaceae) species of Indian occurrence. Journal of Genetics 90, 2130.CrossRefGoogle ScholarPubMed
Dalamu, , Behera, TK, Gaikwad, AB, Saxena, S, Bharadwaj, C and Munshi, AD (2012) Morphological and molecular analyses define the genetic diversity of Asian bitter gourd (‘Momordica charantia’ L.). Australian Journal of Crop Science 6, 261267.Google Scholar
Deakin, JE, Potter, S, O'Neill, R, Ruiz-Herrera, A, Cioffi, MB, Eldridge, MDB, Fukui, K, Graves, JAM, Griffin, D, Grutzner, F, Kratochvil, L, Miura, I, Rovatsos, M, Srikulnath, K, Wapstra, E and Ezaz, T (2019) Chromosomics: bridging the gap between genomes and chromosomes. Genes, 10, 627.CrossRefGoogle Scholar
Decker–Walters, DS (1999) Cucurbits, Sanskrit, and the Indo–Aryans. Economic Botany 53, 98112.CrossRefGoogle Scholar
Dey, SS, Behera, TK, Munshi, AD and Sirohi, PS (2007) Studies on genetic divergence in bitter gourd (Mormordica charantia L.). Indian Journal of Horticulture 64, 5357.Google Scholar
Dhillon, NP, Sanguansil, S, Singh, SP, Masud, MAT, Kumar, P, Bharathi, LK, Yetişir, H, Huang, R, Canh, DX and McCreight, JD (2017) Gourds: bitter, bottle, wax, snake, sponge and ridge. In Grumet, R, Katzir, N and Garcia-Mas, J (eds), Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol. 20. Switzerland: Springer, pp. 155172. https://doi.org/10.1007/7397_2016_24CrossRefGoogle Scholar
Eroğlu, HE (2015) Which chromosomes are subtelocentric or acrocentric? A new karyotype symmetry/asymmetry index. Caryologia 68, 239245.CrossRefGoogle Scholar
Ghosh, I, Bhowmick, BK and Jha, S (2018) Cytogenetics of two Indian varieties of Momordica charantia L. (bitter gourd). Scientia Horticulturae 240, 333343.CrossRefGoogle Scholar
Ghosh, I, Saha, PS, Bhowmick, BK and Jha, S (2021) A phylogenetic analysis of Momordica (Cucurbitaceae) in India based on karyo-morphology, nuclear DNA content and rDNA ITS1–5.8 S–ITS2 sequences. Protoplasma, 258, 347360.CrossRefGoogle Scholar
Heslop-Harrison, J and Heslop-Harrison, Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence: intracellular hydrolysis of fluorescein diacetate. Stain Technology 45, 115120.CrossRefGoogle ScholarPubMed
Kausar, N, Yousaf, Z, Younas, A, Ahmed, HS, Rashid, M, Arif, A and Rehman, HA (2014) Karyological analysis of bitter gourd (Momordica charantia L., Cucurbitaceae) from Southeast Asian countries. Plant Genetic Resources 13, 180182.CrossRefGoogle Scholar
Korir, NK, Han, J, Shangguan, L, Wang, C, Kayesh, E, Zhang, Y and Fang, J (2013) Plant variety and cultivar identification: advances and prospects. Critical Reviews in Biotechnology 33, 111125.CrossRefGoogle ScholarPubMed
Levan, A, Fredga, K and Sandberg, AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52, 201220.CrossRefGoogle Scholar
Lombello, RA and Pinto–Maglio, CAF (2007) Cytomolecular studies in Momordica charantia L. (Cucurbitaceae), a potential medicinal plant. Cytologia 72, 415418.CrossRefGoogle Scholar
Lubinska-Szczygeł, M, Różańska, A, Namieśnik, J, Dymerski, T, Szterk, A, Luksirikul, P and Gorinstein, S (2019) Influence of steam cooking on pro-health properties of Small and Large variety of Momordica charantia. Food Control 100, 335349.CrossRefGoogle Scholar
Murray, B (2005) When does intraspecific C-value variation become taxonomically significant?. Annals of Botany 95, 119125.CrossRefGoogle ScholarPubMed
Pagliarini, MS (2000) Meiotic behavior of economically important plant species: the relationship between fertility and male sterility. Genetics and Molecular Biology 23, 9971002.CrossRefGoogle Scholar
Paszko, B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution 258, 3948.CrossRefGoogle Scholar
Patel, P, Dehery, SK, Jena, SN, Pradhan, C and Das, AB (2023) Ecotype variations in karyotypes and 2C DNA content in Drimia indica (Roxb.) Jossop: an important medicinal plant. Journal of Applied Research on Medicinal and Aromatic Plants 37, 100506.CrossRefGoogle Scholar
Patil, BS, Jayaprakasha, G and Vikram, A (2012) Indigenous crops of Asia and Southeast Asia: exploring health-promoting properties. Journal of Horticultural Sciences 47, 821827.Google Scholar
Peruzzi, L and Eroğlu, HE (2013) Karyotype asymmetry: again, how to measure and what to measure?. Comparative Cytogenetics 7, 19.CrossRefGoogle ScholarPubMed
PPV and FR Act (2001) Protection of Plant Varieties and Farmers Rights Act No. 53. Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India, New Delhi.Google Scholar
Santra, I, Halder, T and Ghosh, B (2022) Cytogenetical evaluation and quantification of rosmarinic acid in Coleus scutellarioides (L.) R. Br. An allopolyploid ornamental medicinal plant. Cytologia 87, 285293.CrossRefGoogle Scholar
Schaefer, H and Renner, SS (2011) Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 60, 122138.CrossRefGoogle Scholar
Trivedi, RN and Roy, RP (1972) Cytological studies in some species of Momordica. Genetica 43, 282291.CrossRefGoogle Scholar
Wang, Y, van Rengs, WM, Zaidan, MWAM and Underwood, CJ (2021) Meiosis in crops: from genes to genomes. Journal of Experimental Botany, 72, 60916109.CrossRefGoogle ScholarPubMed
Zaman, MY and Alam, SS (2009) Karyotype diversity in three cultivars of Momordica charantia L. Cytologia 74, 473478.CrossRefGoogle Scholar
Zhang, Y, Zhu, ML and Dai, SL (2013) Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars. Journal of Systematics and Evolution 51, 335352.CrossRefGoogle Scholar
Supplementary material: File

Alam et al. supplementary material 1

Alam et al. supplementary material
Download Alam et al. supplementary material 1(File)
File 67.2 KB
Supplementary material: File

Alam et al. supplementary material 2

Alam et al. supplementary material
Download Alam et al. supplementary material 2(File)
File 137.3 KB
Supplementary material: File

Alam et al. supplementary material 3

Alam et al. supplementary material
Download Alam et al. supplementary material 3(File)
File 13.5 KB
Supplementary material: File

Alam et al. supplementary material 4

Alam et al. supplementary material
Download Alam et al. supplementary material 4(File)
File 15.9 KB
Supplementary material: File

Alam et al. supplementary material 5

Alam et al. supplementary material
Download Alam et al. supplementary material 5(File)
File 17.2 KB