Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-21T15:39:26.719Z Has data issue: false hasContentIssue false

Diversity and structure assessment of the genetic resources in a germplasm collection from a vanilla breeding programme in Madagascar

Published online by Cambridge University Press:  22 December 2023

Rivo Onisoa Léa Rasoamanalina*
Affiliation:
Earth and Life Institute - Agronomy - Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
Khaled Mirzaei
Affiliation:
Earth and Life Institute - Agronomy - Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
Mondher El Jaziri
Affiliation:
Laboratory of Plant Biotechnology, Université Libre de Bruxelles, Brussels, Belgium
Angel Rafael Ramirez Ramirez
Affiliation:
Earth and Life Institute - Agronomy - Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium Faculty of Agroforestry, University of Guantánamo, Guantánamo, Cuba
Pierre Bertin
Affiliation:
Earth and Life Institute - Agronomy - Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
*
Corresponding author: Rivo Onisoa Léa Rasoamanalina; Email: onyhrapanarivo@gmail.com

Abstract

A breeding programme of aromatic vanilla, dating back to 1944, was conducted in Ambohitsara, Antalaha, SAVA (Sambava, Antalaha, Vohemara, Andapa) – Madagascar. Imported, local, wild and cultivated vanillas were used as progenitors and thousands of hybrids were generated. However, this germplasm has not undergone any genetic evaluation, and it appears that these valuable genetic resources have been dispersed or lost after the end of the programme (2000). This study aims to investigate the genetic diversity and structure of rescued genotypes currently held in a local collection in Antalaha. Double digest restriction associated-site (RAD)-seq (ddRAD)-seq protocol was applied, providing 865 million read sequences from 56 accessions. The ddRAD sequences have been deposited to the SRA archive of NCBI. From the data, 23,701 filtered concordant common Single Nucleotide Polymorphisms (SNPs) were identified using the three widely used tools (Stacks, BCFtools, Genome Analysis ToolKit - GATK) for short-read library sequencing. These SNPs were used for germplasm evaluation. Clustering analysis segregated samples into five genetic groups: Vanilla planifolia, Vanilla pompona, hybrid Tsitaitra, Vanille Banane and the phenotype Tsivaky. Our analysis revealed distinct subgroups within V. pompona and Tsitaitra, emphasizing the importance of further characterization to accurately reflect the genetic diversity and facilitate better utilization of these accessions in future research and germplasm management. The presence of private alleles in all groups (from 487 to 2866) indicated that populations were diverging and represented a large gene pool that could be useful for future breeding efforts. The genetic data obtained from this study offers valuable insights into the genetic diversity and structure of the vanilla population, with potential applications in breeding and conservation efforts.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, DH, Shringarpure, SS, Novembre, J and Lange, K (2015) Admixture 1.3 Software Manual. Los Angeles: UCLA Human Genetics Software Distributiona.Google Scholar
Allendorf, FW, Hohenlohe, PA and Luikart, G (2010) Genomics and the future of conservation genetics. Nature reviews genetics 11, 697709.CrossRefGoogle ScholarPubMed
Andrews, S, Krueger, F, Seconds-Pichon, A, Biggins, F and Wingett, SF (2014) A quality control tool for high throughput sequence data. Babraham Bioinformatics. Babraham Institute 1, 1.Google Scholar
Bory, S, Lubinsky, P, Risterucci, AM, Noyer, JL, Grisoni, M, Duval, MF and Besse, P (2008a) Patterns of introduction and diversification of Vanilla planifolia (Orchidaceae) in Reunion Island (Indian Ocean). American Journal of Botany 95, 805815.CrossRefGoogle ScholarPubMed
Bory, S, Da Silva, D, Risterucci, AM, Grisoni, M, Besse, P and Duval, MF (2008b) Development of microsatellite markers in cultivated vanilla: polymorphism and transferability to other vanilla species. Scientia Horticulturae 115, 420425.CrossRefGoogle Scholar
Bory, S, Catrice, O, Brown, S, Leitch, IJ, Gigant, R, Chiroleu, F, Grisoni, M, Duval, MF and Besse, P (2008c) Natural polyploidy in Vanilla planifolia (Orchidaceae). Genome 51, 816826.CrossRefGoogle ScholarPubMed
Bradbury, PJ, Zhang, Z, Kroon, DE, Casstevens, TM, Ramdoss, Y and Buckler, ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics (Oxford, England) 23, 26332635.Google ScholarPubMed
Brown, SC, Bourge, M, Maunoury, N, Wong, M, Bianchi, MW, Lepers-Andrzejewski, S, Besse, P, Siljak-Yakovlev, S, Dron, M and Satiat-Jeunemaître, B (2017) DNA remodeling by strict partial endoreplication in orchids, an original process in the plant Kingdom. Genome Biology and Evolution 9, 10511071.CrossRefGoogle ScholarPubMed
Catchen, J, Amores, A, Hohenlohe, P, Cresko, W and Postlethwait J, H (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics 1, 171182.CrossRefGoogle ScholarPubMed
Catchen, J, Hohenlohe, PA, Bassham, S, Amores, A and Cresko, WA (2013) Stacks: an analysis tool set for population genomics. Molecular Ecology 22, 31243140.CrossRefGoogle ScholarPubMed
Chambers, AH (2018) Establishing vanilla production and a vanilla breeding program in the southern United States. Handbook of Vanilla Science and Technology 11, 65180.Google Scholar
Chambers, A, Cibrián-Jaramillo, A, Karremans, AP, Martinez, DM, Hernandez-Hernandez, J and Brym, M, … and Vanilla Genotyping Consortium (2021) Genotyping-by-sequencing diversity analysis of international vanilla collections uncovers hidden diversity and enables plant improvement. Plant Science 311, 111019.CrossRefGoogle ScholarPubMed
Danecek, P, Auton, A, Abecasis, G, Albers, CA, Banks, E, DePristo, MA, Handsaker, RE, Lunter, G, Marth, GT, Sherry, ST, McVean, G and Durbin, R (2011) The variant call format and VCFtools. Bioinformatics (Oxford, England) 27, 21562158.Google ScholarPubMed
Danecek, P, Bonfield, JK, Liddle, J, Marshall, J, Ohan, V, Pollard, MO, Whitwham, A, Keane, T, McCarthy, SA, Davies, RM and Li, H (2021) Twelve years of SAMtools and BCFtools. GigaScience 10, 14.CrossRefGoogle ScholarPubMed
Dequaire, J (1976) L'amélioration du vanillier à Madagascar. Journal d'agriculture Tropicale et de Botanique Appliquée 23, 139158.CrossRefGoogle Scholar
Doyle, JJ and Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 1115.Google Scholar
Duval, MF, Bory, S, Andrzejewski, S, Grisoni, M, Messe, P, Causse, S, Charon, C, Dron, M, Odoux, E and Wong, M (2006) Diversité génétique des vanilliers dans leurs zones de dispersion secondaire\n. Les actes du brg 6, 181196.Google Scholar
Ekblom, R and Galindo, J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107, 115.CrossRefGoogle ScholarPubMed
Elias, M, Penet, L, Vindry, P, McKey, D, Panaud, O and Robert, T (2001) Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz), in a traditional farming system. Molecular Ecology 10, 18951907.CrossRefGoogle Scholar
Ellestad, P, Pérez-Farrera, MA and Buerki, S (2022) Genomic insights into cultivated Mexican Vanilla planifolia reveal high levels of heterozygosity stemming from hybridization. Plants 11, 2090.CrossRefGoogle ScholarPubMed
Esposito, S, Cardi, T, Campanelli, G, Sestili, S, Díez, MJ, Soler, S, Prohens, J and Tripodi, P (2020) ddRAD sequencing-based genotyping for population structure analysis in cultivated tomato provides new insights into the genomic diversity of Mediterranean ‘da serbo’ type long shelf-life germplasm. Horticulture Research 7,134.CrossRefGoogle ScholarPubMed
Favre, F, Jourda, C, Grisoni, M, Piet, Q, Rivallan, R, Dijoux, JB and Charron, C (2022) A genome-wide assessment of the genetic diversity, evolution and relationships with allied species of the clonally propagated crop Vanilla planifolia Jacks. ex Andrews. Genetic Resources and Crop Evolution 69, 21252139.CrossRefGoogle Scholar
Feng, J, Zhao, S, Li, M, Zhang, C, Qu, H, Li, Q, Li, J, Lin, Y and Pu, Z (2020) Genome-wide genetic diversity detection and population structure analysis in sweetpotato (Ipomoea batatas) using RAD-seq. Genomics 112, 19781987.CrossRefGoogle ScholarPubMed
Ge, XJ, Liu, MH, Wang, WK, Schaal, BA and Chiang, TY (2005) Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP. Molecular Ecology 14, 933944.CrossRefGoogle Scholar
Govindaraj, M, Vetriventhan, M and Srinivasan, M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International 2015, 431487.CrossRefGoogle ScholarPubMed
Grisoni, M and Nany, F (2021) The beautiful hills: half a century of vanilla (Vanilla planifolia Jacks. ex Andrews) breeding in Madagascar. Genetic Resources and Crop Evolution 68, 16911708.CrossRefGoogle Scholar
Hasing, T, Tang, H, Brym, M, Khazi, F, Huang, T and Chambers, AH (2020) A phased Vanilla planifolia genome enables genetic improvement of flavour and production. Nature Food 1, 811819.CrossRefGoogle ScholarPubMed
Herrera-Cabrera, BE, Salazar-Rojas, VM, Delgado-Alvarado, A, Contreras, J, Contreras, C and Cervantes-Vargas, J (2012) Use and conservation of Vanilla planifolia J. in the Totonacapan Region, México. European Journal of Environmental Sciences 2,1.CrossRefGoogle Scholar
Householder, E, Janovec, J, Mozambite, AB, Maceda, JH, Wells, J, Valega, R and … Christenson, E (2010) Diversity, natural history, and conservation of Vanilla (Orchidaceae) in Amazonian wetlands of Madre de Dios, Peru. Journal of the Botanical Research Institute of Texas 4, 227243.Google Scholar
Hu, Y, Resende, MFR, Bombarely, A, Brym, M, Bassil, E and Chambers, AH (2019) Genomics-based diversity analysis of Vanilla species using a Vanilla planifolia draft genome and genotyping-by-sequencing. Scientific Reports 9, 116.Google ScholarPubMed
Hunter, ME, Hoban, SM, Bruford, MW, Segelbacher, G and Bernatchez, L (2018) Next-generation conservation genetics and biodiversity monitoring. Evolutionary Applications 11, 10291034.CrossRefGoogle ScholarPubMed
Kronthaler, F and Zöllner, S (2021) Data Analysis with RStudio. Berlin/Heidelberg, Germany: Springer.CrossRefGoogle Scholar
Kumar, S, Banks, TW and Cloutier, S (2012) SNP discovery through next-generation sequencing and its applications. International Journal of Plant Genomics 2012, 831460.CrossRefGoogle ScholarPubMed
Lepers-Andrzejewski, S, Causse, S, Caromel, B, Wong, M and Dron, M (2012) Genetic linkage map and diversity analysis of Tahitian vanilla (Vanilla X tahitensis, Orchidaceae). Crop Science 52, 795806.CrossRefGoogle Scholar
Lewis, P and Zaykin, D (2002) GDA (Genetic Data Analysis). Software distributed by the authors.Google Scholar
Li, H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (Oxford, England) 27, 29872993.Google ScholarPubMed
Li, H and Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25, 17541760.Google ScholarPubMed
Li, H and Wren, J (2014) Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics (Oxford, England) 30, 28432851.Google ScholarPubMed
Lubinsky, P, Bory, S, Hernández Hernández, J, Kim, SC and Gómez-Pompa, A (2008) Origins and dispersal of cultivated vanilla (Vanilla planifolia Jacks. [Orchidaceae]). Economic Botany 62, 127138.CrossRefGoogle Scholar
McLaren, W, Gil, L, Hunt, SE, Riat, HS, Ritchie, GRS, Thormann, A, Flicek, P and Cunningham, F (2016) The ensembl variant effect predictor. Genome Biology 17, 114.CrossRefGoogle ScholarPubMed
Minoo, D, Jayakumar, VN, Veena, SS, Vimala, J, Basha, A, Saji, KV, Nirmal, BK and Peter, KV (2008) Genetic variations and interrelationships in Vanilla planifolia and few related species as expressed by RAPD polymorphism. Genetic Resources and Crop Evolution 55, 459470.CrossRefGoogle Scholar
Natarajan, S, Hossain, MR, Kim, HT, Denison, MIJ, Ferdous, MJ, Jung, HJ, Park, JI and Nou, IS (2020) ddRAD-seq derived genome-wide SNPs, high density linkage map and QTLs for fruit quality traits in strawberry (Fragaria x ananassa). 3 Biotech 10, 118.CrossRefGoogle ScholarPubMed
Olson, ND, Lund, SP, Colman, RE, Foster, JT, Sahl, JW, Schupp, JM and … Zook, JM (2015) Best practices for evaluating single nucleotide variant calling methods for microbial genomics. Frontiers in Genetics 6, 235.CrossRefGoogle ScholarPubMed
Peterson, BK, Weber, JN, Kay, EH, Fisher, HS and Hoekstra, HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135.CrossRefGoogle Scholar
Pillon, Y, Qamaruz-Zaman, F, Fay, MF, Hendoux, F and Piquot, Y (2007) Genetic diversity and ecological differentiation in the endangered fen orchid (Liparis loeselii). Conservation Genetics 8, 177184.CrossRefGoogle Scholar
Pirooznia, M, Kramer, M and Parla, J (2014) Validation and assessment of variant calling pipelines for next-generation sequencing. Human Genomics 8, 14.CrossRefGoogle ScholarPubMed
Poplin, R, Ruano-Rubio, V, De Pristo, MA, Fennell, TJ, Carneiro, MO, Van der Auwera, GA and Banks, E (2017) Scaling accurate genetic variant discovery to tens of thousands of samples. BioRxiv, 201178.Google Scholar
Rao, NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. African Journal of biotechnology 3, 136145.Google Scholar
Rochette, NC and Catchen, JM (2017) Deriving genotypes from RAD-seq short-read data using Stacks. Nature Protocols 12, 26402659.CrossRefGoogle ScholarPubMed
Rodolphe, G, Bory, S, Grisoni, M and Besse, P (2011) Biodiversity and evolution in the Vanilla genus. The Dynamical Processes of Biodiversity-Case Studies of Evolution and Spatial Distribution 1, 127.Google Scholar
Saenz-Agudelo, P, DiBattista, JD, Piatek, MJ, Gaither, MR, Harrison, HB, Nanninga, GB and Berumen, ML (2015) Seascape genetics along environmental gradients in the Arabian Peninsula: insights from ddRAD sequencing of anemonefishes. Molecular Ecology 24, 62416255.CrossRefGoogle ScholarPubMed
Saintenac, C, Jiang, D, Wang, S and Akhunov, E (2013) Sequence-based mapping of the polyploid wheat genome. G3: Genes, Genomes, Genetics 3, 11051114.CrossRefGoogle ScholarPubMed
Shirasawa, K, Hirakawa, H and Isobe, S (2016) Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato. DNA Research 23, 145153.CrossRefGoogle ScholarPubMed
Šmarda, P, Bureš, P, Horová, L, Leitch, IJ, Mucina, L, Pacini, E, Tichý, L, Grulich, V and Rotreklová, O (2014) Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences of the United States of America 111, E4096E4102.Google ScholarPubMed
Soltis, DE, Soltis, PS and Tate, JA (2004) Advances in the study of polyploidy since plant speciation. New Phytologist 161, 173191.CrossRefGoogle Scholar
Soto-Arenas, MA (1999) Filogeografía y recursos genéticos de las vainillas de México. Mexico City: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO).Google Scholar
Soto-Arenas, MA and Cameron, KM (2003) Vanilla. Genera Orchidacearum 3, 321334.Google Scholar
Sreedhar, R, Venkatachalam, L, Roohie, K and Bhagyalakshmi, N (2007) Molecular analyses of Vanilla planifolia cultivated in India using RAPD and ISSR markers. Orchid Science and Biotechnology 1, 2933.Google Scholar
Stift, M, Kolář, F and Meirmans, PG (2019) Structure is more robust than other clustering methods in simulated mixed-ploidy populations. Heredity 123, 429441.CrossRefGoogle ScholarPubMed
Tonnier, JP (1960) La fusariose du vanillier à Madagascar. Tamatave, Madagascar: Rapport du laboratoire du vanillier de l'Ivoloina.Google Scholar
Torkamaneh, D, Laroche, J and Belzile, F (2016) Genome-wide SNP calling from genotyping by sequencing (GBS) data: a comparison of seven pipelines and two sequencing technologies. PloS one 11, e0161333.CrossRefGoogle Scholar
Verma, PC, Chakrabarty, D, Jena, SN, Mishra, DK, Singh, PK, Sawant, SV and Tuli, R (2009) The extent of genetic diversity among vanilla species: comparative results for RAPD and ISSR. Industrial Crops and Products 29, 581589.CrossRefGoogle Scholar
Supplementary material: File

Rasoamanalina et al. supplementary material 1
Download undefined(File)
File 2.2 MB
Supplementary material: File

Rasoamanalina et al. supplementary material 2
Download undefined(File)
File 3.9 MB
Supplementary material: File

Rasoamanalina et al. supplementary material 3
Download undefined(File)
File 1.1 MB
Supplementary material: File

Rasoamanalina et al. supplementary material 4
Download undefined(File)
File 37 KB
Supplementary material: File

Rasoamanalina et al. supplementary material 5
Download undefined(File)
File 23.3 KB