Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T12:09:21.307Z Has data issue: false hasContentIssue false

Transmission dynamics of Echinococcus multilocularis; its reproduction number, persistence in an area of low rodent prevalence, and effectiveness of control

Published online by Cambridge University Press:  24 March 2005

K. TAKUMI
Affiliation:
Microbiological Laboratory for Health Protection, National Institute for Public Health and Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
J. VAN DER GIESSEN
Affiliation:
Microbiological Laboratory for Health Protection, National Institute for Public Health and Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands

Abstract

On the basis of high prevalences of Echinococcus multilocularis in the growing fox populations in Central Europe, its total biomass may have increased significantly in the past 20 years. E. multilocularis is now also found in areas outside the known endemic area in Central Europe. Therefore, E. multilocularis, the causative agent of a serious parasitic zoonosis, might be of major concern for public health and a challenge to control. Some experimental field trials to control E. multilocularis using an anti-worm drug reduced parasite burden in a contaminated region during the control campaign, but failed to eradicate the parasite completely. It was our aim to develop a mathematical model describing the biomass of egg, larval, and adult worm stages of the E. multilocularis life-cycle, and simulate a hypothetical control campaign. Additionally, we derived the reproduction number of this parasite and explored conditions for the persistence of the parasite's life-cycle. Our model shows that while control campaigns rapidly reduce the worm burden in the definitive host, and consequently eggs in the environment, the pool of larvae in the intermediate host remains large. The parasite's life-cycle persists in a region where prevalence in the intermediate host is low (∼1%). Therefore, we conclude that the parasite is likely to re-emerge if control is discontinued on the basis of reduced worm population. Continued treatment of the definitive host is required to eradicate the larval stage of the parasite from the intermediate host population.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ANDERSON, R. M. & MAY, R. M. ( 1991). Infectious Diseases of Humans. Oxford University Press, New York.
BAUMEISTER, S., POHLMEYER, K., KUSCHFELDT, S. & STOYE, M. ( 1997). Prevalence of Echinococcus multilocularis and other metacestodes and cestodes in the muskrat (Ondatra zibethicus LINK 1795) in Lower Saxony. Deutsche Tierärztliche Wochenschrift 104, 448452.Google Scholar
BERKE, O. ( 2001). Choropleth mapping of regional count data of Echinococcus multilocularis among red foxes in Lower Saxony, Germany. Preventive Veterinary Medicine 52, 119131.CrossRefGoogle Scholar
BORGSTEEDE, F. H., TIBBEN, J. H. & VAN DER GIESSEN, J. W. ( 2003). The musk rat (Ondatra zibethicus) as intermediate host of cestodes in the Netherlands. Veterinary Parasitology 117, 2936.CrossRefGoogle Scholar
GOTTSTEIN, B., SAUCY, F., DEPLAZES, P., REICHEN, J., DEMIERRE, G., BUSATO, A., ZUERCHER, C. & PUGIN, P. ( 2001). Is high prevalence of Echinococcus multilocularis in wild and domestic animals associated with disease incidence in humans? Emerging Infectious Diseases 7, 408412.Google Scholar
HANSEN, F., JELTSCH, F., TACKMANN, K., STAUBACH, C. & THULKE, H. H. ( 2004). Processes leading to a spatial aggregation of Echinococcus multilocularis in its natural intermediate host Microtus arvalis. International Journal for Parasitology 34, 3744.CrossRefGoogle Scholar
HANSEN, F., TACKMANN, K., JELTSCH, F., WISSEL, C. & THULKE, H. H. ( 2003). Controlling Echinococcus multilocularis-ecological implications of field trials. Preventive Veterinary Medicine 60, 91105.CrossRefGoogle Scholar
HEGGLIN, D., WARD, P. I. & DEPLAZES, P. ( 2003). Anthelmintic baiting of foxes against urban contamination with Echinococcus multilocularis. Emerging Infectious Diseases 9, 12661272.CrossRefGoogle Scholar
HILDRETH, M. B., BLUNT, D. S. & OAKS, J. A. ( 2004). Lethal effects of freezing Echinococcus multilocularis eggs at ultralow temperatures. Journal of Parasitology 90, 841844.CrossRefGoogle Scholar
HOFER, S., GLOOR, S., MULLER, U., MATHIS, A., HEGGLIN, D. & DEPLAZES, P. ( 2000). High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zurich, Switzerland. Parasitology 120, 135142.CrossRefGoogle Scholar
ISHIKAWA, H., OHGA, Y. & DOI, R. ( 2003). A model for the transmission of Echinococcus multilocularis in Hokkaido, Japan. Parasitology Research 91, 444451.Google Scholar
KERN, P., BARDONNET, K., RENNER, E., AUER, H., PAWLOWSKI, Z., AMMANN, R. W., VUITTON, D. A. & KERN, P. ( 2003). European echinococcosis registry: human alveolar echinococcosis, Europe, 1982–2000. Emerging Infectious Diseases 9, 343349.CrossRefGoogle Scholar
MATSUDO, K., INABA, T. & KAMIYA, H. ( 2003). Detection of Echinococcus multilocularis eggs by centrifugal flotation technique: preliminary survey of soil left in the ferryboats commuting between Hokkaido Island, where E. multilocularis is endemic, and mainland Japan. Japanese Journal of Infectious Diseases 56, 118119.Google Scholar
MATSUMOTO, J., YAGI, K., NONAKA, N., OKU, Y. & KAMIYA, M. ( 1998). Time-course of antibody response in mice against oral infection with eggs of Echinococcus multilocularis. Parasitology 116, 463469.CrossRefGoogle Scholar
MULDER, J. L., JANSMAN, H. A. H. & VAN DER GIESSEN, J. ( 2004). Ecologisch onderzoek aan geschoten vossen in Zuid-Limburg, 2002–2003. Onderzoeksrapport vos 2004-1. Alterra, Wageningen.
NONAKA, N., IIDA, M., YAGI, K., ITO, T., OOI, H. K., OKU, Y. & KAMIYA, M. ( 1996). Time course of coproantigen excretion in Echinococcus multilocularis infections in foxes and an alternative definitive host, golden hamsters. International Journal for Parasitology 26, 12711278.CrossRefGoogle Scholar
ROBERTS, M. G. & AUBERT, M. F. ( 1995). A model for the control of Echinococcus multilocularis in France. Veterinary Parasitology 56, 6774.CrossRefGoogle Scholar
STIEGER, C., HEGGLIN, D., SCHWARZENBACH, G., MATHIS, A. & DEPLAZES, P. ( 2002). Spatial and temporal aspects of urban transmission of Echinococcus multilocularis. Parasitology 124, 631640.CrossRefGoogle Scholar
TACKMANN, K., LOSCHNER, U., MIX, H., STAUBACH, C., THULKE, H. H. & CONRATHS, F. J. ( 1998). Spatial distribution patterns of Echinococcus multilocularis (Leuckart 1863) (Cestoda: Cyclophyllidea: Taeniidae) among red foxes in an endemic focus in Brandenburg, Germany. Epidemiology and Infection 120, 101109.CrossRefGoogle Scholar
TACKMANN, K., LOSCHNER, U., MIX, H., STAUBACH, C., THULKE, H. H., ZILLER, M. & CONRATHS, F. J. ( 2001). A field study to control Echinococcus multilocularis-infections of the red fox (Vulpes vulpes) in an endemic focus. Epidemiology and Infection 127, 577587.CrossRefGoogle Scholar
TORGERSON, P. R. & HEATH, D. D. ( 2003). Transmission dynamics and control options for Echinococcus granulosus. Parasitology 127 (Suppl.), S143S158.CrossRefGoogle Scholar
VAN DER GIESSEN, J. W., ROMBOUT, Y. & TEUNIS, P. ( 2004). Base line prevalence and spatial distribution of Echinococcus multilocularis in a newly recognized endemic area in the Netherlands. Veterinary Parasitology 119, 2735.CrossRefGoogle Scholar
VEIT, P., BILGER, B., SCHAD, V., SCHAFER, J., FRANK, W. & LUCIUS, R. ( 1995). Influence of environmental factors on the infectivity of Echinococcus multilocularis eggs. Parasitology 110, 7986.CrossRefGoogle Scholar