Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T17:08:58.909Z Has data issue: false hasContentIssue false

The relationship between the frequency distribution of Ascaris lumbricoides and the prevalence and intensity of infection in human communities

Published online by Cambridge University Press:  06 April 2009

H. L. Guyatt
Affiliation:
Parasite Epidemiology Research Group, Department of Biology, Imperial College, University of London, Prince Consort Road, London SW7 2BB
D. A. P. Bundy
Affiliation:
Parasite Epidemiology Research Group, Department of Biology, Imperial College, University of London, Prince Consort Road, London SW7 2BB
G. F. Medley
Affiliation:
Parasite Epidemiology Research Group, Department of Biology, Imperial College, University of London, Prince Consort Road, London SW7 2BB
B. T. Grenfell
Affiliation:
Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ

Summary

Observed field data from a range of geographically distinct human communities suggest a consistent non-linear relationship between prevalence and mean intensity of Ascaris lumbricoides infection. Utilizing the negative binomial distribution as a description of observed aggregation, maximum-likelihood analysis reveals that the degree of aggregation is a negative linear function of mean worm burden. The factors responsible for this relationship in human populations require further study but may involve some combination of (i) density-dependent reduction in worm numbers within individuals, (ii) density-dependent parasite-induced host mortality or (iii) self-treatment by heavily infected hosts. Variability in the degree of aggregation appears dependent on the level of infection in a community and independent of geographical differences in the host or parasite populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. (1980). The dynamics and control of direct life cycle helminth parasites. Lecture Notes in Biomathematics 39, 278322.CrossRefGoogle Scholar
Anderson, R. M. (1982). The population dynamics and control of hookworm and roundworm infections. In Population Dynamics of Infectious Diseases (ed. Anderson, R. M.), pp. 67108. London: Chapman and Hall.CrossRefGoogle Scholar
Anderson, R. M. & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373–98.CrossRefGoogle ScholarPubMed
Anderson, R. M., Gordon, D. M., Crawley, M. J. & Hassell, M. P. (1982). Variability in the abundance of animal and plant species. Nature, London 296, 245–8.Google Scholar
Anderson, R. M. & May, R. M. (1982). Population dynamics of human helminth infections: control by chemotherapy. Nature, London 297, 557–63.Google Scholar
Anderson, R. M. & May, R. M. (1985). Helminth infections of humans: mathematical models, population dynamics and control. Advances in Parasitology 24, 1101.CrossRefGoogle ScholarPubMed
Arfaa, F. & Ghadirian, E. (1977). Epidemiology and mass-treatment of ascariasis in six rural communities in central Iran. American Journal of Tropical Medicine and Hygiene 26, 866–71.CrossRefGoogle ScholarPubMed
Biagi, F. F. & Rodriguez, O. (1960). A study of ascariasis eradication by repeated mass treatment. American Journal of Tropical Medicine and Hygiene 9, 274–6.CrossRefGoogle ScholarPubMed
Bundy, D. A. P., Cooper, E. S., Thompson, D. E., Anderson, R. M. & Didier, J. M. (1987 a). Age-related prevalence and intensity of Trichuris trichiura in a St. Lucian community. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 8594.CrossRefGoogle Scholar
Bundy, D. A. P., Cooper, E. S., Thompson, D. E., Didier, J. M. & Simmons, I. (1987 b). Epidemiology and population dynamics of Ascaris lumbricoides and Trichuris trichiura in the same community. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 987–93.CrossRefGoogle ScholarPubMed
Cabrera, B. D., Arambulo, P. V. III, & Portillo, G. P. (1975). Ascariasis control and/or eradication in a rural community in the Philippines. South-East Asian Journal of Tropical Medicine and Public Health 6, 510–18.Google ScholarPubMed
Chai, J. Y. (1983). Epidemiological studies on Ascaris lumbricoides reinfection in rural communities in Korea. I. The relationship between prevalence and monthly reinfection rate. Korean Journal of Parasitology 21, 135–41.CrossRefGoogle ScholarPubMed
Chai, J. Y., Kim, K. S., Hong, S. T., Lee, S. H. & Seo, B. S. (1985). Prevalence, worm burden and other epidemiological parameters of Ascaris lumbricoides infection in rural communities in Korea. Korean Journal of Parasitology 23, 241–6.CrossRefGoogle ScholarPubMed
Cheke, R. A., Garms, R. & Kerner, M. (1982). The fecundity of Simulium damnostum s.l. in northern Togo and infections with Onchocerca spp. Annals of Tropical Medicine and Parasitology 76, 561–8.CrossRefGoogle ScholarPubMed
Cho, S. Y. (1977). Study on the quantitative evaluation of reinfection of Ascaris lumbricoides. Korean Journal of Parasitology 15, 1729.CrossRefGoogle Scholar
Cox, D. R. & Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman and Hall.CrossRefGoogle Scholar
Crofton, H. D. (1971). A model of host-parasite relationships. Parasitology 63, 343–64.Google Scholar
Croll, N. A., Anderson, R. M., Gyorkos, T. W. & Ghadirian, E. (1982). The population biology and control of Ascaris lumbricoides in a rural community in Iran. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 187–97.Google Scholar
Dietz, K. (1982). Overall population patterns on the transmission cycle of infectious disease agents. In Population Biology of Infectious Diseases (ed. Anderson, R. M. & May, R. M.), pp. 87102. Berlin: Springer-Verlag.Google Scholar
Elkins, D. B. (1987). The epidemiology and control of Ascaris lumbricoides in an Indian fishing community. Ph.D. thesis, Imperial College, University of London.Google Scholar
Jorgensen, R. J., Nansen, P., Nielsen, K., Eriksen, L. & Anderson, S. (1975). Experimental Ascaris suum infection in the pig. Population kinetics following low and high levels of primary infection in piglets. Veterinary Parasitology 1, 151–7.CrossRefGoogle Scholar
Krey, W. (1949). Der Darmstädter Spulwurmbefall und seine Bekämpfung. Zeitschrift für Hygiene 129, 507–18.CrossRefGoogle Scholar
Krupp, I. M. (1961). Effects of crowding and of superinfection on habitat selection and egg production in Ancylostoma caninum. Journal of Parasitology 47, 957–61.CrossRefGoogle ScholarPubMed
Martin, J., Keymer, A., Isherwood, R. J. & Wainwright, S. M. (1983). The prevalence and intensity of Ascaris lumbricoides infections in Moslem children from northern Bangladesh. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 702–6.Google Scholar
Medley, G. F. (1989). Theoretical studies of the epidemiology and control of human helminth infections. Ph.D. thesis, Imperial College, University of London.Google Scholar
Michael, E. & Bundy, D. A. P. (1989). Density dependence in establishment, growth and worm fecundity in intestinal helminthiasis: the population biology of Trichuris muris (Nematoda) infection in CBA/Ca mice. Parasitology 98, 451–8.CrossRefGoogle ScholarPubMed
Muller, R. (1975). Worms and Disease, a Manual of Medical Helminthology. London: William Heinemann Medical Books.Google Scholar
Nachman, G. (1981). A mathematical model of the functional relationship between density and spatial distribution of a population. Journal of Animal Ecology 50, 453–60.CrossRefGoogle Scholar
Pacala, S. W. & Dobson, A. P. (1988). The relation between the number of parasites/host and host age: population dynamic causes and maximum likelihood estimation. Parasitology 96, 197210.CrossRefGoogle ScholarPubMed
Pawlowski, Z. S. (1990). Ascariasis. In Tropical and Geographical Medicine (ed. Warren, K. S. & Mahmoud, A. A. F.) 2nd edn.New York: McGraw-Hill.Google Scholar
Pawlowski, Z. S. & Davis, A. (1989). Morbidity and mortality in ascariasis. In Ascariasis and its Prevention and Control (ed. Crompton, D. W. T., Nesheim, M. C. & Pawlowski, Z. S.). London: Taylor & Francis.Google Scholar
Pennycuick, L. (1971). Frequency distributions of parasites in a population of three-spined sticklebacks, Gasterosteus aculeatus, with particular reference to the negative binomial distribution. Parasitology 63, 389406.CrossRefGoogle Scholar
Perry, J. N. & Taylor, L. R. (1986). Stability of real interacting populations in space and time: implications, alternatives and the negative binomial k. Journal of Animal Ecology 55, 1053–68.Google Scholar
Pichon, G., Prod'hon, J. & Rivière, F. (1980). Filarioses: surdispersion parasitaire et surinfection de l'hôte invertébré. Cahiers O.R.S.T.O.M. Entomologie Medicale et Parasitologie 18, 2747.Google Scholar
Pritchard, D. I., Quinnell, R. J., Slater, A. F. G., Mckean, P. G., Dale, D. D. S., Raiko, A. & Keymer, A. E. (1990). The epidemiological significance of acquired immunity to Necator americanus: humoral responses to parasite collagen and excretory-secretory antigens. Parasitology 100, 000–000.CrossRefGoogle Scholar
Scott, M. E. (1987). Temporal changes in aggregation: a laboratory study. Parasitology 94, 583–95.Google Scholar
Seo, B. S., Cho, S. Y. & Chai, J. Y. (1979). Frequency distribution of Ascaris lumbricoides in rural Koreans with special reference on the effect of changing endemicity. Korean Journal of Parasitology 17, 105–13.Google Scholar
Thein-Hlaing, , Than-Saw, , Htay-Htay-Age, , Myint-Lwin, & Thein-Maung-Myint, (1984). Epidemiology and transmission dynamics of Ascaris lumbricoides in Okpo village, rural Burma. Transaction of the Royal Society of Tropical Medicine and Hygiene 78, 497504.CrossRefGoogle ScholarPubMed