Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T02:20:25.906Z Has data issue: false hasContentIssue false

Leishmaniasis epidemiology: the theory catches up

Published online by Cambridge University Press:  06 April 2009

C. Dye
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WCIE 7HT

Summary

Until recently, almost all studies of leishmaniasis epidemiology were qualitative and descriptive. But now that the natural history of many Leishmania parasites is quite well known, there is growing interest in quantitative analysis. In this paper I use mathematical models in conjunction with field data to try to answer a wider range of questions than has previously been possible with descriptive techniques, and to sharpen some of the outstanding questions for laboratory workers. This is done with reference to the persistence and resilience of canine leishmaniasis, the maintenance of virulence poly morphisms in Leishmania populations, and the possible existence of cycles of human kala-azar. I conclude by posing a set of problems under three headings: diagnosis of infection (as distinct from disease), natural immunity to Leishmania infection in the vertebrate host, and genetic variation in the parasite population. Some solutions from the laboratory can be found in the companion paper by Black (1992).

Type
Leishmaniasis
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. & May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press.CrossRefGoogle Scholar
Badaró, R., Jones, T. C., Lorenço, R., Cerf, B. J., Sampaio, D., Carvalho, E. M., Rocha, H., Teixeira, R. & Johnson, W. D. Jr. (1986). A prospective study of visceral leishmaniasis in an endemic area of Brazil. Journal of Infectious Diseases 154, 639–49.CrossRefGoogle Scholar
Bates, H. W. (1892). The Naturalist on the River Amazons. London: John Murray.Google Scholar
Blackwell, J. M. (1992). Leishmaniasis epidemiology: all down to the DNA. Parasitology 104 (Suppl.), S19S34.CrossRefGoogle ScholarPubMed
Collins, F. H., Sakai, R. K., Vernik, K. D., Paskewitz, S., Seeley, D. C., Miller, L. H., Collins, W. E., Campbell, C. C. & Gwadz, R. W. (1986). Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234, 607–10.CrossRefGoogle ScholarPubMed
Dawkins, R. (1982). The Extended Phenotype. Oxford: W. H. Freeman & Co.Google Scholar
Dye, C. (1990). Epidemiological significance of vector–parasite interactions. Parasitology 101, 409–15.CrossRefGoogle ScholarPubMed
Dye, C. (1992). The analysis of parasite transmission by blood-sucking insects. Annual Review of Entomology 37, 119.CrossRefGoogle Scholar
Dye, C. & Davies, C. R. (1990). Glasnost and the great gerbil: virulence polymorphisms in the epidemiology of leishmaniasis. Trends in Ecology and Evolution 5, 237–8.CrossRefGoogle Scholar
Dye, C., Guy, M. W., Elkins, D. B., Wilkes, T. J. & Killick-Kendrick, R. (1987). The life expectancy of phlebotomine sand-flies: first field estimates from southern France. Medical and Veterinary Entomology 1, 417–25.CrossRefGoogle ScholarPubMed
Dye, C., Killick-Kendrick, R., Vitutia, M. M., Walton, R., Killick-Kendrick, M., Harith, A. E., Guy, M. W., Cañavate, M.-C. & Hasibeder, G. (1992). Epidemiology of canine visceral leishmaniasis: force of infection and basic reproduction number from a cross-sectional serological survey in the Maltese Islands. Parasitology 105 (in the Press).CrossRefGoogle Scholar
Dye, C. & Wolpert, D. M. (1988). Earthquakes, influenza and cycles of Indian kala-azar. Transactions of the Royal Society of Tropical Medicine and Hygiene 82, 843–50.CrossRefGoogle ScholarPubMed
Harith, A. E., Slappendel, R. J., Reiter, I., Van Knapen, F., De Korte, P., Huigen, E. & Kolk, A. H. J. (1989). Application of a direct agglutination test for detection of specific anti-Leishmania antibodies in the canine reservoir. Journal of Clinical Microbiology 27, 2252–7.CrossRefGoogle ScholarPubMed
Hasibeder, G., Dye, C. & Carpenter, J. (1992). Epidemiology of canine visceral leishmaniasis: methods for estimating force of infection and basic reproduction number. Parasitology 105 (in the Press).CrossRefGoogle Scholar
Kermack, W. O. & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society, A 115, 700–21.Google Scholar
Kermack, W. O. & McKendrick, A. G. (1931). Mathematical analysis of Dr Napier's statistics of house infection in kala-azar. Indian Journal of Medical Research 19, 343–50.Google Scholar
Lainson, R. (1983). The American leishmaniases: some observations on their ecology and epidemiology. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 569–96.CrossRefGoogle ScholarPubMed
Lanotte, G., Rioux, J.-A., Perieres, J. & Vollhardt, Y. (1979). Écologie des leishmanioses dans le sud de la France. 10. Les formes évolutives de la leishmaniose viscérale canine. Élaboration d'une typologie bio clinique à finalité épidémiologique. Annales de Parasitologie 54, 277–95.Google Scholar
Léger, N., Marchais, R., Madulo-Leblond, G., Pesson, B., Kristensen, A., Ferté, H., Killick-Kendrick, R. & Killick-Kendrick, M. (1991). Les phlébotomes impliqués dans la transmission des leishmanioses dans l'île de Gozo (Malte). Annales de Parasitologie Humaine et Compariée 66, 3341.CrossRefGoogle Scholar
Lysenko, A. J. & Beljaev, A. E. (1987). Quantitative approaches to epidemiology. In The Leishmaniases in Biology and Medicine (ed. Peters, W. & Killick-Kendrick, R.), pp. 263–90. London: Academic Press.Google Scholar
McCombie, Young T. C. (1924). Kala-Azar in Assam. London: H. K. Lewis & Co.Google Scholar
Napier, L. E. (1943). The Principles and Practice of Tropical Medicine. London: W. Thacker & Co.Google Scholar
Napier, L. E. & Das, Gupta C. R. (1931). An epidemiological investigation of kala-azar in a rural area of Bengal. Indian Journal of Medical Research 19, 295341.Google Scholar
Neronov, V. M., Strelkova, M. V., Shurkal, A. V., Luschekina, A. A. & Artemyev, M. M. (1987). Natural focality of zoonotic cutaneous leishmaniasis in the Mongolian People's Republic; results and objectives of integrated research. Folia Parasitologica 34, 19.Google ScholarPubMed
Peters, W. & Killick-Kendrick, R. (1987). The Leishmaniases in Biology and Medicine. London: Academic Press.Google Scholar
Rogers, L. (1908). Fevers in the Tropics. London: Henry Frowde.Google Scholar
Rojas, J. C., Zeledon, R. & Urbina, A. (1991). Risk factors associated with cutaneous leishmaniasis in an endemic area of Costa Rica. Transactions of the Royal Society of Tropical Medicine and Hygiene (in the Press).Google Scholar
Sen Gupta, P. C. (1951). A report on kala-azar in Assam. Indian Medical Gazette 86, 266–71 and 312–17.Google ScholarPubMed
Strelkova, M. V., Alekseev, A. N. & Passova, A. N. (1981). Changes in the virulent properties of the Strains of ZCL pathogen as passaged through Phlebotoinus papatasi. Meditsinskaya Parazitologyia i Parazitarnye Bolezni 50, 1922.Google Scholar
Strelkova, M. V., Eliseen, L. N., Passova, O. M. & Kruglov, O. B. (1986). Virulence and seasonal change in the structure of the populations of the Causative agent of zoonotic cutaneous leishmaniasis. Meditsinskaya Parazitologyia i Parazitarnye Bolezni 55, 32–8.Google Scholar
Strelkova, M. V., Shurkal, A. V., Kellina, O. I., Eliseev, L. N., Evans, D. A., Peters, W., Chapman, C. J., Le Blancq, S. M. & Van Eys, G. J. J. M. (1990). A new species of Leishmania isolated from the great gerbil Rhombomys opimus. Parasitology 101, 327–35.CrossRefGoogle ScholarPubMed
World Health Organization (1990). Control of the Leishmaniases. Technical Report Series 793. Geneva: World Health Organization.Google Scholar
Wu, W.-K. & Tesh, R. B. (1990). Selection of Phlebotoinus papatasi (Diptera: Psychodidae) lines susceptible and refractory to Leishmania major infection. American Journal of Tropical Medicine and Hygiene 42, 320–8.CrossRefGoogle ScholarPubMed