Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T08:03:47.966Z Has data issue: false hasContentIssue false

Gene flow and cross-mating in Plasmodium falciparum in households in a Tanzanian village

Published online by Cambridge University Press:  06 April 2009

H. A. Babiker
Affiliation:
Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, UK
J. D. Charlwood
Affiliation:
National Institute for Medical Research, Ifakara Centre, P.O. Box 53, Ifakara, Tanzania
T. Smith
Affiliation:
Department of Public Health and Epidemiology, Swiss Tropical Institute, Postfach, CH-4002, Basel, Switzerland
D. Walliker
Affiliation:
Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, UK

Summary

The diversity of the genes encoding 2 merozoite surface proteins (MSP-1 and MSP-2) of Plasmodium falciparum has been examined in parasites infecting members of 4 households in a village in Tanzania. The polymerase chain reaction (PCR) was used to characterize allelic variants of these genes by the sizes and sequences of regions of tandemly repeated bases in each gene. In each household extensive polymorphism was detected among parasites in the inhabitants and in infected mosquitoes caught in their houses. Similar frequencies of the alleles of these genes were observed in all households. Capture-recapture data indicated that both Anopheles gambiae and A.funestus freely dispersed among households in the hamlet. The results confirm that cross-mating and gene flow occur extensively among the parasites, and are discussed within the context of spatial clustering of natural populations of P. falciparum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aley, S. B., Barnwell, J. W., Wendell, D. & Howard, R. J. (1984). Identification of parasite proteins in a membrane preparation enriched for surface membrane of erythrocytes infected with Plasmodium knowlesi. Molecular and Biochemical Parasitology 12, 6984.CrossRefGoogle Scholar
Babiker, H. A., Creasey, A. M., Fenton, B., Bayoumi, R. A. L., Arnot, D. E. & Walliker, D. (1991). Genetic diversity of Plasmodium falciparum in a village in eastern Sudan. 1. Diversity of enzymes, 2D-PAGE proteins and antigens. Transactions of the Royal Society of Tropical Medicine and Hygiene 85, 572–7.CrossRefGoogle Scholar
Babiker, H. A., Ranford-Cartwright, L., Sultan, A., Satti, G. & Walliker, D. (1994 a). Genetic evidence that R1 chloroquine resistance of Plasmodium falciparum is caused by recrudescence of resistant parasites. Transactions of the Royal Society of Tropical Medicine and Hygiene 88, 328–31.CrossRefGoogle Scholar
Babiker, H. A., Ranford-Cartwright, L. C., Currie, D., Charlwood, D., Billingsley, P., Teuscher, T. & Walliker, D. (1994 b). Random mating in a natural population of the malaria parasite Plasmodium falciparum. Parasitology 109, 413–21.CrossRefGoogle Scholar
Charlwood, D. J., Graves, P. & Birley, M. H. (1986). Capture-recapture studies of Anopheles punctulatus Donitz (Diptera: Culicidae) from Papua New Guinea. Bulletin of Entomological Research 76, 211–27.CrossRefGoogle Scholar
Cheng, Q., Stowers, A., Huang, T.-Y., Bustors, D., Huang, Y.-M., Rzepczyk, C. & Saul, A. (1993). Polymorphism in Plasmodium vivax MSA1 gene – the result of intragenic recombination? Parasitology 106, 335–45.CrossRefGoogle Scholar
Conway, D. J. & McBride, J. S. (1991 a). Population genetics of Plasmodium falciparum within a malaria hyperendemic area. Parasitology 103, 716.CrossRefGoogle ScholarPubMed
Conway, D. J. & Mcbride, J. S. (1991 b). Genetic evidence for the importance of interrupted feed by mosquitoes in the transmission of malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 85, 454–6.CrossRefGoogle Scholar
Creasey, A., Fenton, B., Walker, A., Thaithong, S., Oliveira, S., Mutambu, S. & Walliker, D. (1990). Genetic diversity of Plasmodium falciparum shows geographical variation. American Journal of Tropical Medicine and Hygiene 42, 403–13.CrossRefGoogle ScholarPubMed
Day, K. P., Koella, J. C., Nee, S., Gupta, S. & Read, A. F. (1992). Population genetics and dynamics of Plasmodium falciparum: an ecological view. Parasitology 104, S35–S52.CrossRefGoogle ScholarPubMed
Fenton, B., Clark, J. T., Anjam, Khan C. M., Robinson, J. V., Walliker, D., Ridley, R., Scaife, J. G. & McBride, J. S. (1991). Structural and antigenic polymorphism of the 35- to 48-kilodalton merozoite surface antigen (MSA-2) of the malaria parasite Plasmodium falciparum. Molecular and Cellular Biology 11, 963–71.Google ScholarPubMed
Foley, M., Ranford-Cartwright, L. C. & Babiker, H. A. (1992). Rapid and simple method for isolating malaria DNA from fingerprick samples of blood. Molecular and Biochemical Parasitology 53, 241–4.CrossRefGoogle ScholarPubMed
Forsyth, K., Anders, R. F., Cattani, J. A. & Alpers, M. P.(1989). Small area variation in prevalence of an S-antigen serotype of Plasmodium falciparum in villages of Madang, Papua New Guinea. American Journal of Tropical Medicine and Hygiene 40, 344–50.CrossRefGoogle ScholarPubMed
Gamage-Mendis, A. C., Carter, R., Mendis, C., Dezoysa, A. P. K., Herath, P. R. J. & Mendis, K. (1991). Clustering of malaria infections within an endemic population: risk of malaria associated with the type of housing construction. American Journal of Tropical Medicine and Hygiene 45, 7785.CrossRefGoogle ScholarPubMed
Kemp, D. J., Cowman, A. & Walliker, D. (1990). Genetic diversity in Plasmodium falciparum. Advances in Parasitology 29, 75149.CrossRefGoogle ScholarPubMed
Kilombero Malaria Project (1992). The level of antisporozoite antibodies in a highly endemic malaria area and its relationship with exposure to mosquitoes. Transactions of the Royal Society of Tropical Medicine and Hygiene 86, 499504.CrossRefGoogle Scholar
Kimura, E., Mattei, D., Santi, S. M. Di & Scherf, A. (1990). Genetic diversity in the major merozoite surface antigen of Plasmodium falciparum: high prevalence of a third polymorphic form detected in strains derived from malaria patients. Gene 91, 5762.CrossRefGoogle ScholarPubMed
Molineaux, L. & Gramiccia, G. (1980). The Gorki Project: Research on Epidemiology and Control of Malaria in the Sudan Savanna of West Africa. Geneva: World Health Organization.Google Scholar
Molineaux, L., Muir, D. A., Spencer, H. C. & Wernsdorfer, W. H. (1988). The epidemiology of malaria and its measurement. In Malaria: Principles and Practice of Malariology (ed. Wernsdorfer, W. H. & McGregor, I. A.), pp. 9991089. Edinburgh: Churchill Livingstone.Google Scholar
Ranford-Cartwright, L. C., Balfe, P., Carter, R. & Walliker, D. (1991). Genetic hybrids of Plasmodium falciparum identified by amplification of genomic DNA from single oocysts. Molecular and Biochemical Parasitology 49, 239–44.CrossRefGoogle ScholarPubMed
Ranford-Cartwright, L. C., Balfe, P., Carter, R. & Walliker, D. (1993). Frequency of cross-fertilization in the human malaria parasite Plasmodium falciparum. Parasitology 107, 1118.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
Smith, T., Charlwood, J. D., Kihonda, J., Mwankusye, S., Billingsley, P., Meuwissen, J., Lyimo, E., Takken, W., Teuscher, T. & Tanner, M. (1993). Absence of seasonal variation in malaria parasitaemia in an area of intense seasonal transmission. Acta Tropica 54, 5572.CrossRefGoogle Scholar
Smythe, J. A., Coppel, R. L., Day, K. P., Martin, R. K., Oduola, A. M. J., Kemp, D. J. & Anders, R. F. (1991). Structural diversity in the Plasmodium falciparum merozoite surface antigen MSA-2. Proceedings of the National Academy of Sciences, USA 88, 1751–5.CrossRefGoogle Scholar
Snounou, G., Pinheiro, L., Gonçalves, A., Fonseca, L., Dias, F., Brown, K. N. & Rosario, V. E. (1993). The importance of sensitive detection of malaria parasites in the human and insect hosts in epidemiological studies, as shown by analysis of field samples from Guinea Bissau. Transactions of the Royal Society of Tropical Medicine and Hygiene 87, 649–53.CrossRefGoogle ScholarPubMed
Snow, R. W., Armstrong, Schellenberg J. R. M., Peshu, N., Forster, D., Newton, C. R. J. C., Winstanley, P. A., Mwangi, I., Waruiru, C., Warn, P. A., Newbold, C. & Marsh, K. (1993). Periodicity and space-time clustering of severe childhood malaria on coast of Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene 87, 386–90.CrossRefGoogle ScholarPubMed
Tanabe, K., Mackay, M., Goman, M. & Scaife, J. G. (1987). Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. Journal of Molecular Biology 195, 273–87.CrossRefGoogle Scholar
Triglia, T., Wellems, T. E. & Kemp, D. J. (1992). Towards a high resolution map of the Plasmodium falciparum genome. Parasitology Today 8, 225–9.CrossRefGoogle ScholarPubMed