Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-h2mp8 Total loading time: 0.216 Render date: 2021-08-02T01:01:38.012Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Signatures of mito-nuclear discordance in Schistosoma turkestanicum indicate a complex evolutionary history of emergence in Europe

Published online by Cambridge University Press:  27 July 2017

SCOTT P. LAWTON
Affiliation:
Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
LAUREN I. BOWEN
Affiliation:
Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
AIDAN M. EMERY
Affiliation:
Department of Life Sciences, Natural History Museum, Wolfson Wellcome Biomedical Laboratories, Cromwell Road, London SW7 5BD, UK
GÁBOR MAJOROS
Affiliation:
Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University, P. O. Box2, Budapest H-1400, Hungary
Corresponding
E-mail address:

Summary

High levels of molecular diversity were identified in mitochondrial cytochrome c oxidase (cox1) gene sequences of Schistosoma turkestanicum from Hungary. These cox1 sequences were all specific to Hungary which contrasted with the low levels of diversity seen in the nuclear internal transcribed spacer region (ITS) sequences, the majority of which were shared between China and Iran isolates. Measures of within and between host molecular variation within S. turkestanicum showed there to be substantial differences in molecular diversity, with cox1 being significantly more diverse than the ITS. Measures of haplotype frequencies revealed that each host contained its own subpopulation of genetically unique parasites with significant levels of differentiation. Pairwise mismatch analysis of cox1 sequences indicated S. turkestanicum populations to have a bimodal pairwise difference distribution and to be stable unlike the ITS sequences, which appeared to have undergone a recent population expansion event. Positive selection was also detected in the cox1 sequences, and biochemical modelling of the resulting protein illustrated significant mutational events causing an alteration to the isoelectric point of the cox1 protein, potentially altering metabolism. The evolutionary signature from the cox1 indicates local adaptation and long establishment of S. turkestanicum in Hungary with continual introgression of nuclear genes from Asian isolates. These processes have led to the occurrence of mito-nuclear discordance in a schistosome population

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attwood, S. W., Fatih, F. A. and Upatham, E. S. (2008). DNA-sequence variation among Schistosoma mekongi populations and related taxa; phylogeography and the current distribution of Asian schistosomiasis. PLoS Neglected Tropical Diseases 2, e200.CrossRefGoogle ScholarPubMed
Brusentsov, I. J., Katokhin, A. V., Brusentsova, I. V., Shekhovtsov, S. V., Borovikov, S. N., Goncharenko, G. G., Lider, L. A., Romashov, B. V., Rusinek, O. T., Shibitov, S. K., Suleymanov, M. M., Yevtushenko, A. V. and Mordvinov, V. A. (2013). Low genetic diversity in Wide spread Eurasian liver fluke Opisthorchis felineus suggest special demographic history of this trematode species. PLoS ONE 8, e62453.CrossRefGoogle ScholarPubMed
Chamot, E., Tiscani, L. and Rougemont, A. (1998). Public health importance and risk factors for cercarial dermatitis associated with swimming in Lake Leman at Geneva, Switzerland. Epidemiolology & Infection 120, 305314.CrossRefGoogle ScholarPubMed
Cheviron, Z. A. and Brumfield, R. T. (2009). Migration-selection balance and local adaptation of mitochondrial haplotypes in rufous collard sparrows (Zonotrichia capensis) along an elevational gradient. Evolution 63, 15931605.CrossRefGoogle Scholar
Clement, M., Posada, D. and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 16571660.CrossRefGoogle ScholarPubMed
Criscione, C. D., Poulin, R. P. and Blouin, M. S. (2005). Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Molecular Ecology 14, 22472257.CrossRefGoogle ScholarPubMed
Curtis, J. and Minchella, D. J. (2000). Schistosome genetic structure: when clumping worms isn't just splitting hairs. Parasitology Today 16, 6871.CrossRefGoogle Scholar
Curtis, J., Sorensen, R. E. and Minchella, D. J. (2002). Schistosome genetic diversity: the implications of population structure as detected with microsatellite markers. Parasitology 125 (Suppl.), S51S59.CrossRefGoogle ScholarPubMed
Denton, R. D., Kenyon, L. J., Greenwald, K. R. and Lisle, H. (2014). Evolutionary basis of mito-nuclear discordance between sister species of mole salamanders (Ambystoma sp.). Molecular Ecology 23, 28112824.CrossRefGoogle Scholar
Excoffer, L. and Lischer, H. E. L. (2010). Arliquin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567.CrossRefGoogle Scholar
Gompert, Z., Forister, M. L., Fordyces, J. A. and Nice, C. C. (2008). Widespread mito-nuclear discordance with evidence for introgressive hybridization and selective sweeps in Lycaeides . Molecular Ecology 17, 52315244.CrossRefGoogle ScholarPubMed
Goulding, T. C. and Cohen, C. S. (2014). Phylogeography of marine acanthocephalan: lack of cryptic diversity in a cosmopolitan parasite of mole crabs. Journal of Biogeography 41, 965976.CrossRefGoogle Scholar
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hanelt, B., Mwangi, I. N., Kinuthia, J. M., Maina, G. M., Agola, L. E., Mutuku, M. W., Steinauer, M. L., Agwanda, B. R., Kigo, L., Mungai, B. N., Loker, E. S. and Mkoji, G. M. (2010). Schistosomes of small mammals from the Lake Victoria Basin, Kenya: new species, familiar species, and implications for schistosomiasis control. Parasitology 137, 11091118.CrossRefGoogle ScholarPubMed
Horák, P. and Kolárová, L. (2010). Snails, waterfowl and cercarial dermatitis. Freshwater Biology 56, 779790.CrossRefGoogle Scholar
Huyse, T., Webster, B. L., Geldof, S., Stothard, J. R., Diaw, O. T., Polman, K. and Rollinson, D. (2009). Bidirectional introgressive hybridization between a cattle and human schistosome species. PLoS Pathogens 5.CrossRefGoogle ScholarPubMed
Katewa, S. D. and Ballard, J. W. O. (2007). Sympatric Drosophila simulans flies with distinct mtDNA show difference in mitochondrial respiration and electron transport. Insect Biochemistry and Molecular Biology 37, 213222.CrossRefGoogle ScholarPubMed
Kodandaramaiah, U., Simonsen, T., Bromilow, S., Wahlberg, N. and Sperling, F. (2013). Deceptive single locus taxonomy and phylogeography: Walbachia-associated divergence in mitochondrial DNA is not reflected in morphology and nuclear markers in a butterfly species. Ecology & Evolution 3, 51675176.CrossRefGoogle ScholarPubMed
Kolárová, L. (2007). Schistosomes causing cercarial dermatitis: a mini – review of current trends in systematic and of host specificity and pathogenicity. Folia Parasitologica 54, 8187.CrossRefGoogle ScholarPubMed
Lawton, S. P. and Majoros, G. (2013). A foreign invader or a reclusive native? DNA bar coding reveals a distinct European lineage of the zoonotic parasite Schistosoma turkestanicum (syn. Orientobilharzia turkestanicum (Dutt and Srivastava, 1955)). Infection, Genetics & Evolution 13, 186193.CrossRefGoogle Scholar
Librado, P. and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14512452.CrossRefGoogle ScholarPubMed
Lichtenbergova, L., Kolbekova, P., Kourilova, P., Kansy, M., Mikes, L., Haas, H., Schramm, G., Horak, P., Kolrova, L. and Mountford, A. P. (2008). Antibody responses induced by Trichobilharzia regenti antigens in murine and human hosts exhibiting cercarial dermatitis. Parasite Immunology 30, 585595.Google ScholarPubMed
Lu, D., Wang, T., Rudge, J. W., Donnelly, C. A., Fang, G. and Webster, J. P. (2011). Genetic diversity of Schistosoma japonicum miracidia from individual rodent hosts. International Journal for Parasitology 41, 13711376.CrossRefGoogle ScholarPubMed
Majoros, G., Dán, A. and Erdélyi, K. (2010). A natural focus of the blood fluke Orientobilharzia turkestanica (Skrjabin, 1913) (Trematoda: Schistosomatidae) in red deer (Cervus elaphus) in Hungary. Veterinary Parasitology 170, 218223.CrossRefGoogle Scholar
McDonough, M. M., Šumbera, R., Mazoch, V., Ferguson, A. W., Phillips, C. D. and Bryja, J. (2015). Multilocus phylogeography of a widespread savanna-woodland-adapted rodents reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region. Molecular Ecology 24, 52485266.CrossRefGoogle ScholarPubMed
Morales, H. E., Pavlova, A., Joseph, L. and Sunnucks, P. (2015). Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance. Molecular Ecology 24, 28202837.CrossRefGoogle ScholarPubMed
Morgan, J. A. T., DeJong, R. J., Lwambo, N. J. S., Mungai, B. N., Mkoji, G. M. and Locker, E. S. (2003). First report of a natural hybrid between Schistosoma mansoni and S. rodaini . International Journal for Parasitology 89, 416418.CrossRefGoogle Scholar
Nesi, N., Kadjo, B., Pourrut, X., Leroy, E., Shongo, C. P., Cruaud, C. and Hassanin, A. (2013). Molecular systematics and phylogeography of the tribe Myonycterini (Mammalia, Pteropodidae) inferred from mitochondrial and nuclear markers. Molecular Phylogenetics & Evolution 66, 126137.CrossRefGoogle ScholarPubMed
Paczesniak, D., Jokela, J., Larkin, K. and Neiman, M. (2013). Discordance between nuclear and mitochondrial genomes in sexual and asexual lineages of the freshwater snail Potamopyrgus antipodarum . Molecular Ecology 22, 46954710.CrossRefGoogle ScholarPubMed
Pavlova, A., Amos, J. N., Joseph, L., Loynes, K., Austin, J. J., Keogh, J. S., Stone, G. N., Nicholls, J. A. and Sunnucks, P. (2013). Perched at the mito-nuclear crossroads: divergent mitochondrial lineages correlate with environment in the face on ongoing nuclear gene flow in an Australian Bird. Evolution 67, 34123428.CrossRefGoogle Scholar
Poole, J. E., Hellmann, I., Jensen, J. D. and Nielsen, R. (2010). Population genetic inference from genomic sequence variation. Genome Research 20, 291300.CrossRefGoogle Scholar
Prugnolle, F., Theron, A., Pointer, J. P., Jabbour-Zahab, R., Jarne, P., Durand, P. and de Meeusm, T. (2005). Dispersal in a parasitic worm and it's two hosts: consequences for local adaptation. Evolution 59, 296303.CrossRefGoogle Scholar
Rudge, J. W., Lu, D. B., Fang, G. R., Wang, T. P., Basanez, M. C. and Webster, J. P. (2009). Parasite genetic differentiation by habitat type and host species: molecular epidemiology of Schistosoma japonicum in hilly and marshland areas of Anuhui Province, China. Molecular Ecology 18, 21342146.CrossRefGoogle ScholarPubMed
Sequeira, F., Sodré, D., Ferrand, N., Bernardi, J. A. R., Sampaio, I., Schneider, H. and Vallinoto, M. (2011). Hybridization and massive mtDNA unidirectional introgression between closely related Neotropical toads Rhinella marina and R. scheideri inferred from mtDNA and nuclear markers. BMC Evolutionary Biology 11, 264.CrossRefGoogle Scholar
Silva, G., Lima, F. P., Martel, P. and Castilho, R. (2014). Thermal adaptation and clinal mitochondrial DNA variation of European anchovy. Proceedings of the Royal Society B 281, pii: 20141093.CrossRefGoogle ScholarPubMed
Sire, C., Durand, P., Pointer, J. P. and Theron, A. (2001). Genetic diversity of Schistosoma mansoni within and among individual hosts (Rattus rattus): infrapopulation differentiation at microspatial scale. International Journal for Parasitology 31, 16091616.CrossRefGoogle ScholarPubMed
Steinauer, M. L., Hanelt, B., Mwangi, I. N., Maina, G. M., Agola, L. E., Kinuthia, J. M., Mutuku, M. W., Mungai, B. N., Wilson, W. D., Mkoji, G. M. and Loker, E. S. (2008). Introgressive hybridization of human and rodent schistosome parasites in western Kenya. Molecular Ecology 17, 50625074.CrossRefGoogle ScholarPubMed
Sun, J., Wang, M., Zhang, Y., Chapuis, M., Jiang, X., Hu, G., Yang, X., Ge, C., Xue, X. and Hong, X. (2015). Evidence for high dispersal ability and mito-nuclear discordance in the small brown plant hopper, Laodelphax striatellus . Scientific Reports 5, 8045.CrossRefGoogle Scholar
Tabaripour, R., Youssefi, M. R. and Tabaripour, R. (2015). Genetic Identification of Orientobilharzia turkestancicum from sheep isolates in Iran. Iranian Journal of Parasitology 10, 6268.Google ScholarPubMed
Toews, D. P. and Brelsford, A. (2012). The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology 21, 39073930.CrossRefGoogle ScholarPubMed
Tomasco, I. H. and Lessa, E. P. (2011). The evolution of mitochondrial genes in subterranean caviomorph rodents: adaptation against a background of purifying selection. Molecular Phylogenetics and Evolution 61, 6470.CrossRefGoogle ScholarPubMed
Van den Broeck, F., Meurs, L., Raeymaekers, J. A. M., Boon, N., Dieye, T. N., Volchaert, F. A. M., Polman, K. and Huyse, T. (2014). Inbreeding within human Schistosoma mansoni: do host-specific factors shape the genetic composition of parasite populations? Heredity 113, 3241.CrossRefGoogle ScholarPubMed
Wang, C. R., Chen, J., Zhao, J. P., Chen, A. H., Zhai, Y. Q., Li, L. and Zhu, X. Q. (2009). Orientobilharzia species: neglected parasitic zoonotic agents. Acta Tropica 109, 171175.CrossRefGoogle ScholarPubMed
Webster, B. L., Webster, J. P., Gouvras, A. N., Garba, A., Lamine, M. S., Diaw, O. T., Seye, M. M., Tchuem Tchuenté, L. A., Simoonga, C., Mubila, L., Mwanga, J. R., Lwambo, N. J. S., Kabatereine, N. B., Lange, C. N., Kariuki, C., Mkoji, G. M., Rollinson, D. and Stothard, J. R. (2013). DNA ‘barcoding’ of Schistosoma mansoni across sub-Saharan Africa supports substantial within locality diversity and geographical separation of genotypes. Acta Tropica 128, 250260.CrossRefGoogle ScholarPubMed
Wikström, M. and Verkhovsky, M. I. (2011). The D-channel of cytochrome oxidase: an alternative view. Biochemica et Biophysica Acta 1807, 12731278.CrossRefGoogle Scholar
Woolley, S., Johnson, J., Smith, M. J., Crandall, K. A. and McClellan, D. A. (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19, 671672.CrossRefGoogle ScholarPubMed
Zhao, Q. P., Jiang, M. S., Dong, H. F. and Nie, P. (2012). Diversification of Schistosoma japonicum in Mainland China revealed by mitochondrial DNA. PLoS Neglected Tropical Diseases 6, e1503.CrossRefGoogle ScholarPubMed
Supplementary material: File

Lawton supplementary material

Table S1

Download Lawton supplementary material(File)
File 16 KB
Supplementary material: File

Lawton supplementary material

Figure S1

Download Lawton supplementary material(File)
File 740 KB
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Signatures of mito-nuclear discordance in Schistosoma turkestanicum indicate a complex evolutionary history of emergence in Europe
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Signatures of mito-nuclear discordance in Schistosoma turkestanicum indicate a complex evolutionary history of emergence in Europe
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Signatures of mito-nuclear discordance in Schistosoma turkestanicum indicate a complex evolutionary history of emergence in Europe
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *