Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-01T21:28:54.195Z Has data issue: false hasContentIssue false

Ixodes ricinus L.: mast cells, basophils and eosinophils in the sequence of cellular events in the skin of infested or re-infested rabbits

Published online by Cambridge University Press:  06 April 2009

M. Brossard
Affiliation:
Institut de Zoologie, Université, Chantemerle 22, CH-2000 Neuchâtel, Switzerland
V. Fivaz
Affiliation:
Institut de Zoologie, Université, Chantemerle 22, CH-2000 Neuchâtel, Switzerland

Extract

Some information on acquired resistance of rabbits against Ixodes ricinus ticks has been obtained by comparing tissue changes and cellular infiltration during 2 successive infestations, with particular emphasis on the cells involved in immediate type hypersensitivity reactions: mast cells, basophils and eosinophils. More degranulated mast cells were observed in tick lesions 2 h after the beginning of re-infestation than in the first infestation and more degranulated basophils were present on the 5th day of re-infestation. Numerous eosinophils infiltrated the dermis, especially on the 5th day of the second infestation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. (1973). Tick resistance: basophil in skin reactions of resistant guinea-pigs. International Journal for Parasitology 3, 195200.CrossRefGoogle ScholarPubMed
Allen, J. R., Doube, B. M. & Kemp, D. H. (1976). Histology of bovine skin reactions to Ixodes holocyclus Neumann. Canadian Journal of Comparative Medicine 41, 2635.Google Scholar
Askenase, P. W., Debernakdo, R., Tauben, D. & Kashgarian, M. (1978). Cutaneous basophil anaphylaxis. Immediate vasopermeability increases and anaphylactic degranulation of basophils at delayed hypersensitivity reactions challenged with additional antigen. Immunology 35, 741–55.Google Scholar
Benveniste, J., Egido, J., Guttierrez Millet, V. & Camussi, G. (1977). Detection of immediate hypersensitivity in rabbits by direct basophil degranulation. Journal of Allergy and Clinical Immunology 59, 271–9.CrossRefGoogle ScholarPubMed
Berenberg, K. L., Ward, P. A. & Sonnenshine, D. E. (1972). Tick-bite injury: Mediation by a complement-derived chemotactic factor. Journal of Immunology 108, 451–6.CrossRefGoogle Scholar
Bowessidjaou, J., Brossard, M. & Aeschlimann, A. (1977). Effects and duration of resistance acquired by rabbits on feeding and egg laying in Ixodes ricinus L.. Experientia 33, 528–30.Google Scholar
Brossard, M. (1976). Relations immunologiques entre Bovins et Tiques, plus particulièrement entre Bovins et Boophilus microplus. Acta tropica 33, 1536.Google Scholar
Brossard, M. (1977). Rabbits infested with adult Ixodes ricinus L.: passive transfer of resistance with immune serum. Bulletin de la Société de Pathologie Exotique 70, 289–94.Google ScholarPubMed
Brossard, M. (1982). Rabbits infested with adult Ixodes ricinus L.: effects of mepyramine on acquired resistance. Experientia (in the Press).Google Scholar
Brossard, M. & Girardin, P. (1979). Passive transfer of resistance in rabbits infested with adult Ixodes ricinus L.: humoral factors influence feeding and egg laying. Experientia 35, 1395–6.Google Scholar
Brossard, M., Monneron, J.-P. & Papatheodorou, V. (1982). Progressive sensitization of circulating basophils against Ixodes ricinus L. antigens during repeated infestations of rabbits. Parasite Immunology (in the Press).Google Scholar
Butterworth, A. E., Sturrock, R. F., Houba, V., Mahmoud, A. A. F., Sher, A. & Rees, P. H. (1975). Eosinophils as mediators of antibody-dependent damage to schistosomula. Nature, London 256, 727–9.Google Scholar
Butterworth, A. E., Wassom, D. L., Gleich, G. J., Loegering, D. A. & David, J. R. (1979). Damage to schistosomula of Schistosoma mansoni induced directly by eosinophil major basic protein. Journal of Immunology 122, 221–9.CrossRefGoogle ScholarPubMed
Clark, R. A. F., Gallin, J. I. & Kaplan, A. P. (1975). The selective eosinophil chemotaetic activity of histamine. Journal of Experimental Medicine 142, 1462–76.CrossRefGoogle ScholarPubMed
Gleich, G. J. (1977). The eosinophil: Structure and biochemical composition. American Journal of Tropical Medicine and Hygiene 26, 126–33.Google Scholar
Hubscher, T. (1975). Role of the eosinophil in the allergic reaction. I. EDI – an eosinophil-derived inhibitor of histamine release. Journal of Immunology 114, 1379–88.CrossRefGoogle ScholarPubMed
Kay, A. B. & Austen, K. F. (1971). The IgE-mediated release of an eosinophil leucocyte chemotaetic factor from human lung. Journal of Immunology 107, 899902.CrossRefGoogle ScholarPubMed
Kay, A. B. & Austen, K. F. (1972). Antigen-antibody induced cutaneous eosinophilia in complement-deficient guinea-pigs. Clinical and Experimental Immunology 11, 3742.Google ScholarPubMed
Kay, A. B., Stechschulte, D. J. & Austen, K. F. (1971). An eosinophil leucocyte chemotaetic factor of anaphylaxis. Journal of Experimental Medicine 133, 602–19.Google Scholar
Kemp, D. H. & Bourne, A. (1980). Boophilus microplus: the effect of histamine on the attachment of cattle-tick larvae – studies in vivo and in vitro. Parasitology 80, 487–96.Google Scholar
Rothwell, T. L. W., Prichard, R. K. & Love, R. J. (1974). Studies on the role of histamine and 5-hydroxytryptamine in immunity against the nematode Trichostrongylus colubriformis. In vivo and in vitro effects of the amines. International Archives of Allergy and Applied Immunology 46, 113.CrossRefGoogle ScholarPubMed
Stevens, E. (1968). Tick feeding in relation to disease transmission. Ph.D. thesis, University of London.Google Scholar
Tatchell, R. J. & Morhouse, D. E. (1970). Neutrophils: their role in the formation of a tick lesion. Science 167, 1002–3.Google Scholar
Theis, J. H. & Budwiser, P. O. (1974). Rhipicephalus sanguineus: Sequential histopathology of the host arthropod interface. Experimental Parasitology 36, 77105.Google Scholar
Zeiger, R. S., Yurdin, D. L. & Colten, H. R. (1976). Histamine metabolism. II. Cellular and subcellular localization of the catabolicenzymes, histaminase and histamine methyl transferase, in human leucocytes. Journal of Allergy and Clinical Immunology 58, 172–9.CrossRefGoogle Scholar