Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-8hm5d Total loading time: 0.674 Render date: 2022-05-19T20:53:19.712Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

How many cattle can be infected by Trypanosoma vivax by reusing the same needle and syringe, and what is the viability time of this protozoan in injectable veterinary products?

Published online by Cambridge University Press:  09 November 2021

Rubens Dias de Melo Junior
Affiliation:
Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
Thiago Souza Azeredo Bastos
Affiliation:
Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
Luciana Maffini Heller
Affiliation:
Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
Luiz Fellipe Monteiro Couto
Affiliation:
Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
Dina María Beltrán Zapa
Affiliation:
Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
Alliny Souza de Assis Cavalcante
Affiliation:
Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
Leonardo Bueno Cruvinel
Affiliation:
Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
João Eduardo Nicaretta
Affiliation:
Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
Haryie Victória Iuasse
Affiliation:
Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
Lorena Lopes Ferreira
Affiliation:
Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Vando Edésio Soares
Affiliation:
Universidade Brasil, Descalvado, São Paulo, Brazil
Guilherme Rocha Lino de Souza
Affiliation:
Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
Fabiano Antônio Cadioli
Affiliation:
Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Universidade Estadual Paulista – Unesp, Araçatuba, Brazil
Welber Daniel Zanetti Lopes*
Affiliation:
Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
*
Author for correspondence: Welber Daniel Zanetti Lopes, E-mail: wdzlopes@hotmail.com

Abstract

It was investigated how many cattle become infected with Trypanosoma vivax by subcutaneous (SC), intramuscular (IM) and intravenous (IV) routes, using the same syringe and needle from an animal with acute T. vivax infection. Besides, the T. vivax viability in 109 injectable veterinary drugs (antibiotics, antiparasitics, reproductive hormones, vitamin complex and derivatives, vaccines, anaesthetics, anti-inflammatory/antipyretics, antitoxics). In the field assay, four groups were performed: T01, T02 and T03 animals that received saline solution with the same syringe and needle contaminated with T. vivax via SC, IM and IV routes, respectively, and T04 control animals that received only saline solution with the same syringe and needle IV. In the laboratory, drugs had their pH measured and T. vivax viability verified. The number of cattle infected with T. vivax via SC (3/20) was lower (P ≤ 0.05) compared to via IM (9/20), which was lower (P ≤ 0.05) compared to IV (15/20). The solution pH did not influence T. vivax viability. In 44% (48/109) of the products, T. vivax remained viable regardless of time, stooding out that in 100% of oxytocins the protozoan was verified, at some evaluation times. The mean of T. vivax quantified in foot-and-mouth and brucellosis vaccines and in doramectin-based products were higher (P ≤ 0.05) than found in blood + saline solution.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, DE (2010) Survey of biosecurity practices utilized by veterinarians working with farm animal species. Online Journal of Rural Research & Policy 5, 113. https://doi.org/10.4148/ojrrp.v5i7.263.CrossRefGoogle Scholar
Andrade Neto, AQ, Afonso, JAB, Mendonça, CL, Souto, RJC, André, MR and Machado, RZ (2015) Surtos de tripanossomíase em bovinos leiteiros no agreste dos estados de Pernambuco e Alagoas.Google Scholar
Bassi, PB, de Araújo, FF, Garcia, GC, Vinícius da Silva, M, Oliveira, CJF, Bittar, ER, de Souza Gomes, M, Rodrigues do Amaral, L, Costa e Silva, MF, Nascentes, GAN, Rodrigues Junior, V, Martins-Filho, OA, Araújo, MSS and Bittar, JFF (2018) Parasitological and immunological evaluation of cattle experimentally infected with Trypanosoma vivax. Experimental Parasitology 185, 98106. https://doi.org/10.1016/j.exppara.2018.01.010.CrossRefGoogle ScholarPubMed
Bastos, TSA, Faria, AM, de Madrid, DMC, De Bessa, LC, Linhares, GFC, Fidelis Junior, OL, Sampaio, PH, Cruz, BC, Cruvinel, LB, Nicaretta, JE, Machado, RZ, Da Costa, AJ and Lopes, WDZ (2017) First outbreak and subsequent cases of Trypanosoma vivax in the state of Goiás, Brazil. Revista Brasileira de Parasitologia Veterinaria 26, 366371. https://doi.org/10.1590/S1984-29612017019.CrossRefGoogle ScholarPubMed
Bastos, TSA, Faria, AM, de Cavalcante, ASA, de Madrid, DMC, Zapa, DMB, Nicaretta, JE, Cruvinel, LB, Heller, LM, Couto, LFM, de Rodrigues, DC, Ferreira, LL, Soares, VE, Cadioli, FA and Lopes, WDZ (2020a) Infection capacity of Trypanosoma vivax experimentally inoculated through different routes in bovines with latent Anaplasma marginale. Experimental Parasitology 211, 107861. https://doi.org/10.1016/j.exppara.2020.107861.CrossRefGoogle Scholar
Bastos, TSA, Faria, AM, Couto, LFM, Nicaretta, JE, Cavalcante, ASDA, Zapa, DMB, Ferreira, LL, Heller, LM, Madrid, DMDC, Cruvinel, LB, Rossi, GAM, Soares, VE, Cadioli, FA and Lopes, WDZ (2020b) Epidemiological and molecular identification of Trypanosoma vivax diagnosed in cattle during outbreaks in central Brazil. Parasitology 147, 17. https://doi.org/10.1017/S0031182020001006.CrossRefGoogle Scholar
Brener, Z (1961) Contribuição ao estudo da terapêutica experimental da Doença de Chagas. UFMG.Google Scholar
Cadioli, FA, de Athayde Barnabé, P, Machado, RZ, Teixeira, MCA, André, MR, Sampaio, PH, Fidélis, OL, Teixeira, MMG and Marques, LC (2012) First report of Trypanosoma vivax outbreak in dairy cattle in São Paulo state, Brazil. Revista Brasileira de Parasitologia Veterinaria 21, 118124. https://doi.org/10.1590/s1984-29612012000200009.CrossRefGoogle ScholarPubMed
Chávez-Larrea, MA, Medina-Pozo, ML, Cholota-Iza, CE, Jumbo-Moreira, JR, Saegerman, C, Proaño-Pérez, F, Ron-Román, J and Reyna-Bello, A (2020) First report and molecular identification of Trypanosoma (Duttonella) vivax outbreak in cattle population from Ecuador. Transboundary and Emerging Diseases 4, 24222428. https://doi.org/10.1111/tbed.13906.Google Scholar
Claypool, CK, Spencer, JA, Zoca, SM, Shafii, B, Price, WJ, Ahmadzadeh, A, Rimbey, NR and Dalton, JC (2019) Short communication: reproduction outcomes in dairy heifers following a 14-d progesterone insert presynchronization protocol. Journal of Dairy Science 102, 1173011735. https://doi.org/10.3168/jds.2019-17000.CrossRefGoogle ScholarPubMed
Cortez, AP, Rodrigues, AC, Garcia, HA, Neves, L, Batista, JS, Bengaly, Z, Paiva, F and Teixeira, MMG (2009) Cathepsin L-like genes of Trypanosoma vivax from Africa and South America – characterization, relationships and diagnostic implications. Molecular and Cellular Probes 23, 4451. https://doi.org/10.1016/j.mcp.2008.11.003.CrossRefGoogle ScholarPubMed
Costa, RVC, Abreu, APM, Machado, MN, Thomé, SMG, Massard, CL, Santos, HA and Brito, MF (2016) Tripanossomíase em bovinos no estado do Rio de Janeiro. Pesqui. Veterinária Bras 36, 161163.Google Scholar
Costa, RVC, Abreu, APM, Thomé, SMG, Massard, CL, Santos, HA, Ubiali, DG and Brito, MF (2020) Parasitological and clinical-pathological findings in twelve outbreaks of acute trypanosomiasis in dairy cattle in Rio de Janeiro state, Brazil. Veterinary Parasitology: Regional Studies and Reports 22, 100466. https://doi.org/10.1016/j.vprsr.2020.100466.Google Scholar
Couto, LFM, Bastos, TSA, Heller, LM, Zapa, DMB, de Assis Cavalcante, AS, Nicaretta, JE, Cruvinel, LB, de Melo Júnior, RD, Ferreira, LL, Soares, VE, Cadioli, FA, de Mendonça, RP and Lopes, WDZ (2021a) In vitro and in vivo effectiveness of disinfectants against Trypanosoma vivax. Veterinary Parasitology: Regional Studies and Reports 25, 100587. https://doi.org/10.1016/j.vprsr.2021.100587.Google Scholar
Couto, LFM, Zapa, DMB, Heller, LM, de Cavalcante, ASA, Nicaretta, JE, Cruvinel, LB, Colli, MHA, Ferreira, LL, Alencar, A, de Melo-Junior, RD, Soares, VE, de Borges, FA and Lopes, WDZ (2021b) Gastrointestinal nematode control programs in yearling Nellore heifers: analysis of fecal egg counts, weight gain and reproductive indices. Animal Reproduction Science 226, 106695. https://doi.org/10.1016/j.anireprosci.2021.106695.CrossRefGoogle Scholar
Dagnachew, S and Bezie, M (2015) Review on Trypanosoma vivax. African Journal of Basic & Applied Sciences 7, 4164.Google Scholar
de la Fuente, J, Antunes, S, Bonnet, S, Cabezas-Cruz, A, Domingos, AG, Estrada-Peña, A, Johnson, N, Kocan, KM, Mansfield, KL, Nijhof, AM, Papa, A, Rudenko, N, Villar, M, Alberdi, P, Torina, A, Ayllón, N, Vancova, M, Golovchenko, M, Grubhoffer, L, Caracappa, S, Fooks, AR, Gortazar, C and Rego, ROM (2017) Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Frontiers in Cellular and Infection Microbiology 7, 113. https://doi.org/10.3389/fcimb.2017.00114.CrossRefGoogle ScholarPubMed
Fidelis Junior, OL, Sampaio, PH, Machado, RZ, André, MR, Marques, LC and Cadioli, FA (2016) Avaliação dos sinais clínicos, parasitemia e alterações hematológicas e bioquímicas de bovinos experimentalmente infectados pelo Trypanosoma vivax. Revista Brasileira de Parasitologia Veterinaria 25, 6981. https://doi.org/10.1590/S1984-29612016013.CrossRefGoogle Scholar
Guerra, RDMSN, Feitosa, AB, Santos, HP, Abreu-Silva, AL and Dos Santos, ACG (2008) Biometry of Trypanosoma vivax found in a calf in the state of Maranhão. Brazil Ciencia Rural 38, 833835. https://doi.org/10.1590/S0103-84782008000300041.CrossRefGoogle Scholar
Lopes, STP, da Prado, BS, Martins, GHC, Beserra, HEA, de Sousa Filho, MAC, de Evangelista, LSM, de Cardoso, JFS, Mineiro, ALBB and de Souza, JAT (2018) Trypanosoma vivax em bovino leiteiro. Acta Scientific Veterinary 46, 15.Google Scholar
Nielloud, F and Marti-Mestres, G (2000) Pharmaceutical Emulsions and Suspensions: Second Edition, Revised and Expanded. Boca Raton: CRC Press.Google Scholar
Ogwu, D, Njoku, CO and Osori, DIK (1986) Effects of experimental Trypanosomavivax infection on first-, second-, and third-trimester pregnancy in heifers. Theriogenology 25, 383398. https://doi.org/10.1016/0093-691X(86)90046-4.CrossRefGoogle ScholarPubMed
OIE – Animal Health and Welfare [WWW Document] (2021) URL. Available at https://www.oie.int/en/what-we-do/animal-health-and-welfare/ (accessed 5.7.21).Google Scholar
Okech, G, Watson, ED, Luckins, AG and Makawiti, DW (1996) The effect of Trypanosoma vivax infection on late pregnancy and postpartum return to cyclicity in Boran cattle. Theriogenology 46, 859869. https://doi.org/10.1016/S0093-691X(96)00243-9.CrossRefGoogle ScholarPubMed
Oliveira, JB, Hernández-Gamboa, J, Jiménez-Alfaro, C, Zeledón, R, Blandón, M and Urbina, A (2009) First report of Trypanosoma vivax infection in dairy cattle from Costa Rica. Veterinary Parasitology 163, 136139. https://doi.org/10.1016/j.vetpar.2009.03.051.CrossRefGoogle ScholarPubMed
Otte, MJ and Abuabara, JY (1991) Transmission of South American Trypanosoma vivax by the neotropical horsefly Tabanus nebulosus. Acta Tropica 49, 7376. https://doi.org/10.1016/0001-706X(91)90033-G.CrossRefGoogle ScholarPubMed
Pimentel, DS, do Nascimento Ramos, CA, do Ramos, RAN, de Araújo, FR, Borba, ML, da Gloria Faustino, MA and Alves, LC (2012) First report and molecular characterization of Trypanosoma vivax in cattle from state of Pernambuco, Brazil. Veterinary Parasitology 185, 286289. https://doi.org/10.1016/j.vetpar.2011.10.019.CrossRefGoogle Scholar
Psychogios, N, Hau, DD, Peng, J, Guo, AC, Mandal, R, Bouatra, S, Sinelnikov, I, Krishnamurthy, R, Eisner, R, Gautam, B, Young, N, Xia, J, Knox, C, Dong, E, Huang, P, Hollander, Z, Pedersen, TL, Smith, SR, Bamforth, F, Greiner, R, McManus, B, Newman, JW, Goodfriend, T and Wishart, DS (2011) The human serum metabolome. PLoS ONE 6, e16957. https://doi.org/10.1371/journal.pone.0016957.CrossRefGoogle ScholarPubMed
Reinbold, JB, Coetzee, JF, Hollis, LC, Nickell, JS, Riegel, CM, Christopher, JA and Ganta, RR (2010) Comparison of iatrogenic transmission of Anaplasma marginale in Holstein steers via needle and needle-free injection techniques. American Journal of Veterinary Research 71, 11781188.CrossRefGoogle ScholarPubMed
SAS Institute (2006) SAS user's guide: estatistics.Google Scholar
Scoles, GA and Ueti, MW (2015) Vector ecology of equine piroplasmosis∗. Annual Review of Entomology 60, 561580. https://doi.org/10.1146/annurev-ento-010814-021110.CrossRefGoogle Scholar
Silva, AS, Costa, MM, Polenz, MF, Polenz, CH, Teixeira, MMG, Lopes, STDA and Monteiro, SG (2009) First report of Trypanosoma vixax in bovines in the State of Rio Grande do Sul. Brazil Ciencia Rural 39, 25502554. https://doi.org/10.1590/s0103-84782009005000189.Google Scholar
USDA, Dairy Heifer Raiser (2011) An overview of operations that specialize in raising dairy heifers. USDA, 149p. Available at https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairyheifer11/HeiferRaiser_1.pdf.Google Scholar
Vieira, OLE, de Macedo, LO, Santos, MAB, Silva, JABA, de Mendonça, CL, da Gloria Faustino, MA, do Nascimento Ramos, CA, Alves, LC, Ramos, RAN and de Carvalho, GA (2017) Detection and molecular characterization of Trypanosoma (Duttonella) vivax in dairy cattle in the state of Sergipe, Northeastern Brazil. Revista Brasileira de Parasitologia Veterinaria 26, 516520. https://doi.org/10.1590/S1984-29612017048.CrossRefGoogle ScholarPubMed
Wang, X, Jobe, M, Tyler, KM and Steverding, D (2008) Efficacy of common laboratory disinfectants and heat on killing trypanosomatid parasites. Parasites and Vectors 1, 13. https://doi.org/10.1186/1756-3305-1-35.CrossRefGoogle ScholarPubMed
Woo, PT (1970) The haematocrit centrifuge technique for the diagnosis of African trypanosomiasis. Acta Tropica 27, 384386.Google Scholar

Linked content

Please note a has been issued for this article.

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

How many cattle can be infected by Trypanosoma vivax by reusing the same needle and syringe, and what is the viability time of this protozoan in injectable veterinary products?
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

How many cattle can be infected by Trypanosoma vivax by reusing the same needle and syringe, and what is the viability time of this protozoan in injectable veterinary products?
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

How many cattle can be infected by Trypanosoma vivax by reusing the same needle and syringe, and what is the viability time of this protozoan in injectable veterinary products?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *