Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-lm9t2 Total loading time: 0.694 Render date: 2022-11-26T22:00:38.508Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

De novo transcriptome reveals blood coagulation/antithrombin factors and infection mechanisms in Angiostrongylus cantonensis adult worms

Published online by Cambridge University Press:  17 March 2021

Leandro de Mattos Pereira
Affiliation:
Laboratório de Biologia Parasitária, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências, Porto Alegre, RS, Brazil Databiomics, Parque Tecnológico Tecnovates, Lajeado, RS95914-014, Brazil
Milene Pereira Guimarães de Jezuz
Affiliation:
Laboratório de Biologia Parasitária, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências, Porto Alegre, RS, Brazil
Amaranta Ramos Rangel
Affiliation:
Laboratório de Biologia Parasitária, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências, Porto Alegre, RS, Brazil
Bruna Dalcin Baldasso
Affiliation:
Laboratório de Biologia Parasitária, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências, Porto Alegre, RS, Brazil
Amanda Bungi Zaluski
Affiliation:
Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências, Porto Alegre, RS, Brazil
Carlos Graeff-Teixeira
Affiliation:
Laboratório de Biologia Parasitária, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências, Porto Alegre, RS, Brazil Núcleo de Doenças Infecciosas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
Alessandra Loureiro Morassutti*
Affiliation:
Escola de Medicina IMED, Passo Fundo, RS99070-220, Brazil Instituto de Patologia de Passo Fundo, Passo Fundo, RS99010-081, Brazil
*
Author for correspondence: Alessandra Loureiro Morassutti, E-mail: almorassutti@gmail.com

Abstract

Angiostrongylus cantonensis is the main aetiological agent of eosinophilic meningoencephalitis in humans. Several outbreaks have been documented around the world, cementing its status as an emerging global public health concern. As a result, new strategies for the diagnosis, prophylaxis and treatment of cerebral angiostrongyliasis are urgently needed. In this study, we report on the de novo assembly of the A. cantonensis transcriptome, its full functional annotation and a reconstruction of complete metabolic pathways. All results are available at AngiostrongylusDB (http://angiostrongylus.lad.pucrs.br/admin/welcome). The aim of this study was to identify the active genes and metabolic pathways involved in the mechanisms of infection and survival inside Rattus norvegicus. Among 389 metabolic mapped pathways, the blood coagulation/antithrombin pathways of heparan sulphate/heparin are highlighted. Moreover, we identified genes codified to GP63 (leishmanolysin), CALR (calreticulin), ACE (peptidyl-dipeptidase A), myoglobin and vWD (von Willebrand factor type D domain protein) involved in the infection invasion and survival of the parasite. The large dataset of functional annotations provided and the full-length transcripts identified in this research may facilitate future functional genomics studies and provides a basis for the development of new techniques for the diagnosis, prevention and treatment of cerebral angiostrongyliasis.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this study.

References

Akasaka, M, Kato, KH, Kitajima, K and Sawada, H (2013) Identification of novel isoforms of vitellogenin expressed in ascidian eggs. Journal of Experimental Zoology 320, 118128.CrossRefGoogle ScholarPubMed
Akiyoshi, S, Nomura, KH, Dejima, K, Murata, D, Matsuda, A, Kanaki, N, Takaki, T, Mihara, H, Nagaishi, T, Furukawa, S, Ando, KG, Yoshina, S, Mitani, S, Togayachi, A, Suzuki, Y, Shikanai, T, Narimatsu, H and Nomura, K (2015) RNAi screening of human glycogene orthologs in the nematode Caenorhabditis elegans and the construction of the C. elegans glycogene database. Glycobiology 25, 820.10.1093/glycob/cwu080CrossRefGoogle Scholar
Alexa, A, Rahnenführer, J and Lengauer, T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics (Oxford, England) 22, 16001607.10.1093/bioinformatics/btl140CrossRefGoogle ScholarPubMed
Alicata, JE (1965) Biology and distribution of the rat lungworm, Angiostrongylus cantonensis, and its relationship to eosinophilic meningoencephalitis and other neurological disorders of man and animals. Advances in Parasitology 3, 223248.CrossRefGoogle ScholarPubMed
Barrett, J (1983) Lipid metabolism. In: Arme, C and Pappas, PW (eds), Biology of the Eucestoda. London: Academic Press, vol. 2, pp. 391419.Google Scholar
Bolger, AM, Lohse, M and Usadel, B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30, 21142120.10.1093/bioinformatics/btu170CrossRefGoogle ScholarPubMed
Bouchery, T, Filbey, K, Shepherd, A, Chandler, J, Patel, D, Schmidt, A, Camberis, M, Peignier, A, Smith, AA, Johnston, K, Painter, G, Pearson, M, Giacomin, P, Loukas, A, Bottazzi, ME, Hotez, P and LeGros, G (2018) A novel blood-feeding detoxification pathway in Nippostrongylus brasiliensis L3 reveals a potential checkpoint for arresting hookworm development. PLoS Pathogens 14, e1006931.10.1371/journal.ppat.1006931CrossRefGoogle ScholarPubMed
Brindley, PJ, Mitreva, M, Ghedin, E and Lustigman, S (2009) Helminth genomics: the implications for human health. PLoS Neglected Tropical Diseases 3, e538. https://doi.org/10.1371/journal.pntd.0000538CrossRefGoogle ScholarPubMed
Brooks, DR, Appleford, PJ, Murray, L and Isaac, RE (2003) An essential role in molting and morphogenesis of Caenorhabditis elegans for ACN-1, a novel member of the angiotensin-converting enzyme family that lacks a metallopeptidase active site. Journal of Biological Chemistry 278, 5234052346.10.1074/jbc.M308858200CrossRefGoogle ScholarPubMed
Burns, RE, Bicknese, EJ, Qvarnstrom, Y, DeLeon-Carnes, M, Drew, CP, Gardiner, CH and Rideout, BA (2014) Cerebral Angiostrongylus cantonensis infection in a captive African pygmy falcon (Polihierax semitorquatus) in southern California. Journal of Veterinary Diagnostic Investigation 26, 695698.CrossRefGoogle Scholar
Camacho, C, Coulouris, G, Avagyan, V, Ma, N, Papadopoulos, J, Bealer, K and Madden, TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10, 421.CrossRefGoogle ScholarPubMed
Cass, CL, Johnson, JR, Califf, LL, Xu, T, Hernandez, HJ, Stadecker, MJ, Yates, JR and Williams, DL (2007) Proteomic analysis of Schistosoma mansoni egg secretions. Molecular and Biochemical Parasitology 155, 8493.CrossRefGoogle ScholarPubMed
Červená, B, Modrý, D, Fecková, B, Hrazdilová, K, Foronda, P, Alonso, AM, Lee, R, Walker, J, Niebuhr, CN, Malik, R and Šlapeta, J (2019) Low diversity of Angiostrongylus cantonensis complete mitochondrial DNA sequences from Australia, Hawaii, French Polynesia and the Canary Islands revealed using whole genome next-generation sequencing. Parasites and Vectors 12, 113.10.1186/s13071-019-3491-yCrossRefGoogle ScholarPubMed
Cheng, X, Xiang, Y, Xie, H, Xu, CL, Xie, TF, Zhang, C and Li, Y (2013) Molecular characterization and functions of fatty acid and retinoid binding protein gene (Ab-far-1) in Aphelenchoides besseyi. PLoS One 8, 19.Google Scholar
Conesa, A, Götz, S, García-Gómez, JM, Terol, J, Talón, M and Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics (Oxford, England) 21, 36743676.10.1093/bioinformatics/bti610CrossRefGoogle ScholarPubMed
Cottee, PA, Nisbet, AJ, Boag, PR, Larsen, M and Gasser, RB (2004) Characterization of major sperm protein genes and their expression in Oesophagostomum dentatum (Nematoda: Strongylida). Parasitology 129, 479490.10.1017/S003118200400561XCrossRefGoogle Scholar
Curwen, RS, Ashton, PD, Sundaralingam, S and Wilson, RA (2006) Identification of novel proteases and immunomodulators in the secretions of schistosome cercariae that facilitate host entry. Molecular & Cellular Proteomics 5, 835844.CrossRefGoogle ScholarPubMed
Czarnewski, P, Araújo, ECB, Oliveira, MC, Mineo, TWP and Silva, NM (2017) Recombinant TgHSP70 immunization protects against Toxoplasma gondii brain cyst formation by enhancing inducible nitric oxide expression. Frontiers in Cellular and Infection Microbiology 7, 113.CrossRefGoogle ScholarPubMed
do Espírito-Santo, MCC, Pinto, PLS, da Mota, DJG and Gryschek, RCB (2013) The first case of Angiostrongylus cantonensis eosinophilic meningitis diagnosed in the city of São Paulo, Brazil. Revista do Instituto de Medicina Tropical de São Paulo 55, 129132.10.1590/S0036-46652013000200012CrossRefGoogle Scholar
Duan, J, Flock, K, Jue, N, Zhang, M, Jones, A, Al Seesi, S, Mandoiu, I, Pillai, S, Hoffman, M, O'Neill, R, Zinn, S, Govoni, K, Reed, S, Jiang, H, Jiang, Z and Tian, X (2019) Dosage compensation and gene expression of the X chromosome in sheep. G3 (Bethesda) 9, 305314.CrossRefGoogle ScholarPubMed
El-Gebali, S, Mistry, J, Bateman, A, Eddy, SR, Luciani, A, Potter, SC, Qureshi, M, Richardson, LJ, Salazar, GA, Smart, A, Sonnhammer, ELL, Hirsh, L, Paladin, L, Piovesan, D, Tosatto, SCE and Finn, RD (2019) The Pfam protein families database in 2019. Nucleic Acids Research 47, D427D432.10.1093/nar/gky995CrossRefGoogle ScholarPubMed
Esko, JD and Selleck, SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annual Review of Biochemistry 71, 435471.CrossRefGoogle ScholarPubMed
Fairfax, KC, Vermeire, JJ, Harrison, LM, Bungiro, RD, Grant, W, Husain, SZ and Cappello, M (2009) Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum. International Journal for Parasitology 39, 15611571.CrossRefGoogle ScholarPubMed
Galvin, B, Mizuguchi, S, Uyama, T, Kitagawa, H, Nomura, KKH, Dejima, K, Gengyo-Ando, K, Mitani, S and Sugahara, K (2003) Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature 423, 443448.Google Scholar
Ghosh, A, Bandyopadhyay, K, Kole, L and Das, PK (1999) Leishmania donovani that may mediate cell adhesion. Biochemical Journal 337, 551558.10.1042/bj3370551CrossRefGoogle ScholarPubMed
Grabherr, MG, Haas, BJ, Yassour, M, Levin, JZ, Thompson, DA, Amit, I, Adiconis, X, Fan, L, Raychowdhury, R, Zeng, Q, Chen, Z, Mauceli, E, Hacohen, N, Gnirke, A, Rhind, N, di, Palma, Birren, BW, Nusbaum, C, Lindblad-Toh, K, Friedman, N and Regev, A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29, 644652.10.1038/nbt.1883CrossRefGoogle ScholarPubMed
Graeff-Teixeira, C, Da Silva, ACA and Yoshimura, K (2009) Update on eosinophilic meningoencephalitis and its clinical relevance. Clinical Microbiology Reviews 22, 322348.10.1128/CMR.00044-08CrossRefGoogle ScholarPubMed
Han, SM, Cottee, PA and Miller, MA (2010) Sperm and oocyte communication mechanisms controlling C. elegans fertility. Developmental Dynamics 239, 12651281.Google ScholarPubMed
Hartmann, W, Singh, N, Rathaur, S, Brenz, Y, Liebau, E, Fleischer, B and Breloer, M (2014) Immunization with Brugia malayi Hsp70 protects mice against Litomosoides sigmodontis challenge infection. Parasite Immunology 36, 141149.10.1111/pim.12093CrossRefGoogle ScholarPubMed
He, H, Cheng, M, Yang, X, Meng, J, He, A, Zheng, X, Li, Z, Guo, P, Pan, Z and Zhan, X (2009) Preliminary molecular characterization of the human pathogen Angiostrongylus cantonensis. BMC Molecular Biology 10, 97.10.1186/1471-2199-10-97CrossRefGoogle ScholarPubMed
Higón, M, Monteagudo, C, Fried, B, Esteban, JG, Toledo, R and Marcilla, A (2008) Molecular cloning and characterization of Echinostoma caproni heat shock protein-70 and differential expression in the parasite derived from low- and high-compatible hosts. Parasitology 135, 14691477.10.1017/S0031182008004927CrossRefGoogle ScholarPubMed
Ibrahim, HM, Bannai, H, Xuan, X and Nishikawa, Y (2009) Toxoplasma gondii cyclophilin 18-mediated production of nitric oxide induces bradyzoite conversion in a CCR5-dependent manner. Infection and Immunity 77, 36863695.10.1128/IAI.00361-09CrossRefGoogle Scholar
Jones, P, Binns, D, Chang, HY, Fraser, M, Li, W, McAnulla, C, McWilliam, H, Maslen, J, Mitchell, A, Nuka, G, Pesseat, S, Quinn, AF, Sangrador-Vegas, A, Scheremetjew, M, Yong, SY, Lopez, R and Hunter, S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics (Oxford, England) 30, 12361240.CrossRefGoogle ScholarPubMed
Kanehisa, M, Sato, Y, Kawashima, M, Furumichi, M and Tanabe, M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research 44, D457D462.CrossRefGoogle ScholarPubMed
King, KL, Essig, J, Roberts, TM and Moerland, TS (1994) Regulation of the Ascaris major sperm protein (MSP) cytoskeleton by intracellular pH. Cell Motility Cytoskeleton 27, 193205.10.1002/cm.970270302CrossRefGoogle ScholarPubMed
Kiontke, K, Barrière, A, Kolotuev, I, Podbilewicz, B, Sommer, R, Fitch, DHA and Félix, MA (2007) Trends, stasis, and drift in the evolution of nematode vulva development. Current Biology 17, 19251937.CrossRefGoogle ScholarPubMed
Kreuger, J and Kjellén, L (2012) Heparan sulfate biosynthesis: regulation and variability. Journal of Histochemistry & Cytochemistry 60, 898907.CrossRefGoogle ScholarPubMed
Kuwabara, PE (2003) The multifaceted C. elegans major sperm protein: an ephrin signaling antagonist in oocyte maturation. Genes & Development 17, 155161.10.1101/gad.1061103CrossRefGoogle ScholarPubMed
Luck, AN, Yuan, X, Voronin, D, Slatko, BE, Hamza, I and Foster, JM (2016) Heme acquisition in the parasitic filarial nematode Brugia malayi. The FASEB Journal 30, 35013514.10.1096/fj.201600603RCrossRefGoogle ScholarPubMed
Martin-Alonso, A, Foronda, P, Quispe-Ricalde, MA, Feliu, C and Valladares, B (2011) Seroprevalence of Angiostrongylus cantonensis in wild rodents from the Canary Islands. PLoS One 6, 26.10.1371/journal.pone.0027747CrossRefGoogle ScholarPubMed
McGwire, BS, O'Connell, WA, Chang, KP and Engman, DM (2002) Extracellular release of the glycosylphosphatidylinositol (GPI)-linked Leishmania surface metalloprotease, gp63, is independent of GPI phospholipolysis. Implications for parasite virulence. Journal of Biological Chemistry 277, 88028809.10.1074/jbc.M109072200CrossRefGoogle ScholarPubMed
Miller, MA, Nguyen, VQ, Lee, MH, Kosinski, M, Schedl, T, Caprioli, RM and Greenstein, D (2001) A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science (New York, N.Y.) 291, 21442147.10.1126/science.1057586CrossRefGoogle ScholarPubMed
Morassutti, AL, Perelygin, A, De Carvalho, MO, Lemos, LN, Pinto, PM, Frace, M, Wilkins, PP, Graeff-Teixeira, C and Da Silva, AJ (2013) High throughput sequencing of the Angiostrongylus cantonensis genome: a parasite spreading worldwide. Parasitology 140, 13041309.CrossRefGoogle ScholarPubMed
Moriya, Y, Itoh, M, Okuda, S, Yoshizawa, AC and Kanehisa, M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 35, W182W185.10.1093/nar/gkm321CrossRefGoogle ScholarPubMed
Murata, D, Nomura, KH, Dejima, K, Mizuguchi, S, Kawasaki, N, Matsuishi-Nakajima, Y, Ito, S, Gengyo-Ando, K, Kage-Nakadai, E, Mitani, S and Nomura, K (2012) GPI-anchor synthesis is indispensable for the germline development of the nematode Caenorhabditis elegans. Molecular Biology of the Cell 23, 982995.10.1091/mbc.e10-10-0855CrossRefGoogle ScholarPubMed
Noborn, F, Gomez Toledo, A, Nasir, W, Nilsson, J, Dierker, T, Kjellén, L and Larson, G (2018) Expanding the chondroitin glycoproteome of Caenorhabditis elegans. Journal of Biological Chemistry 293, 379389.10.1074/jbc.M117.807800CrossRefGoogle ScholarPubMed
Payne, SH and Loomis, WF (2006) Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryotic Cell 5, 272276.10.1128/EC.5.2.272-276.2006CrossRefGoogle ScholarPubMed
Piras, V, Chiow, A and Selvarajoo, K (2018) Long range order and short range disorder in Saccharomyces cerevisiae biofilm. Engineering Biology 3, 3, 2019.Google Scholar
Qiao, F, Luo, L, Peng, H, Luo, S, Huang, W, Cui, J, Li, X, Kong, L, Jiang, D, Chitwood, DJ and Peng, D (2016) Characterization of three novel fatty acid- and retinoid-binding protein genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the cereal cyst nematodes Heterodera avenae and H. filipjevi. PLoS One 11, 117.CrossRefGoogle ScholarPubMed
Rao, AU, Carta, LK, Lesuisse, E and Hamza, I (2005) Lack of heme synthesis in a free-/living eukaryote. Proceedings of the National Academy of Sciences of the United States of America 102, 42704275.10.1073/pnas.0500877102CrossRefGoogle Scholar
Rey-Burusco, MF, Ibanez-Shimabukuro, M, Gabrielsen, M, Franchini, GR, Roe, AJ, Griffiths, K, Zhan, B, Cooper, A, Kennedy, MW, Corsico, B and Smith, BO (2015) Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus. Biochemical Journal 471, 403414.10.1042/BJ20150068CrossRefGoogle ScholarPubMed
Rothstein, NM, Higashi, G, Yates, J and Rajan, TV (1989) Onchocerca volvulus heat shock protein 70 is a major immunogen in amicrofilaremic individuals from a filariasis-endemic area. Molecular and Biochemical Parasitology 33, 229235.10.1016/0166-6851(89)90084-4CrossRefGoogle ScholarPubMed
Sadler, JE (2008) Biochemistry and genetics of von Willebrand factor. Annual Review of Biochemistry 67, 395424.10.1146/annurev.biochem.67.1.395CrossRefGoogle Scholar
Sahoo, S, Murugavel, S, Devi, IK, Vedamurthy, GV, Gupta, SC, Singh, BP and Joshi, P (2013) Glyceraldehyde-3-phosphate dehydrogenase of the parasitic nematode Haemonchus contortus binds to complement C3 and inhibits its activity. Parasite Immunology 35, 457467.10.1111/pim.12058CrossRefGoogle ScholarPubMed
Selkirk, ME, Denham, DA, Partono, F and Maizels, RM (1989) Heat shock cognate 70 is a prominent immunogen in Brugian filariasis. Journal of Immunology 143, 299308.Google ScholarPubMed
Shadeo, A, Chari, R, Vatcher, G, Campbell, J, Lonergan, KM, Matisic, J, van Niekerk, D, Ehlen, T, Miller, D, Follen, M, Lam, WL and MacAulay, C (2007) Comprehensive serial analysis of gene expression of the cervical transcriptome. BMC Genomics 8, 111.10.1186/1471-2164-8-142CrossRefGoogle ScholarPubMed
Simão, FA, Waterhouse, RM, Ioannidis, P, Kriventseva, EV and Zdobnov, EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics (Oxford, England) 31, 32103212.CrossRefGoogle ScholarPubMed
Spinner, WG, Thompson, FJ, Emery, DC and Viney, ME (2012) Characterization of genes with a putative key role in the parasitic lifestyle of the nematode Strongyloides ratti. Parasitology 139, 13171328.10.1017/S0031182012000637CrossRefGoogle ScholarPubMed
Stoeckius, M, Grün, D and Rajewsky, N (2014) Paternal RNA contributions in the Caenorhabditis elegans zygote. The EMBO Journal 33, 17401750.10.15252/embj.201488117CrossRefGoogle ScholarPubMed
Strube, C, Buschbaum, S and Schnieder, T (2009) Molecular characterization and real-time PCR transcriptional analysis of Dictyocaulus viviparus major sperm proteins. Parasitology Research 104, 543551.10.1007/s00436-008-1228-5CrossRefGoogle ScholarPubMed
Sun, C, Hu, L, Liu, S, Gao, Z and Zhang, S (2013) Functional analysis of domain of unknown function (DUF) 1943, DUF1944 and von Willebrand factor type D domain (VWD) in vitellogenin2 in zebrafish. Developmental and Comparative Immunology 41, 469476.10.1016/j.dci.2013.07.005CrossRefGoogle ScholarPubMed
Teien, AN, Abildgaard, U and Höök, M (1976) The anticoagulant effect of heparan sulfate and dermatan sulfate. Thrombosis Research 8, 859867.CrossRefGoogle ScholarPubMed
Teixeira, JE, Sateriale, A, Bessoff, KE and Huston, CD (2012) Control of Entamoeba histolytica adherence involves metallosurface protease 1, an M8 family surface metalloprotease with homology to leishmanolysin. Infection and Immunity 80, 21652176.10.1128/IAI.06389-11CrossRefGoogle ScholarPubMed
Tyagi, R, Joachim, A, Ruttkowski, B, Rosa, BA, Martin, JC, Hallsworth-Pepin, K, Zhang, X, Ozersky, P, Wilson, RK, Ranganathan, S, Sternberg, PW, Gasser, RB and Mitreva, M (2015 a) Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. Biotechnology Advances 33, 980991.10.1016/j.biotechadv.2015.05.004CrossRefGoogle ScholarPubMed
Tyagi, R, Rosa, BA, Lewis, WG and Mitreva, M (2015 b) Pan-phylum comparison of nematode metabolic potential. PLoS Neglected Tropical Diseases 9, 132.CrossRefGoogle ScholarPubMed
van den Elsen, S, Holovachov, O, Karssen, G, van Megen, H, Helder, J, Bongers, T, Bakker, J, Holterman, M and Mooyman, P (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11, 927950.Google Scholar
Vedamurthy, GV, Sahoo, S, Devi, IK, Murugavel, S and Joshi, P (2015) The N-terminal segment of glyceraldehyde-3-phosphate dehydrogenase of Haemonchus contortus interacts with complements C1q and C3. Parasite Immunology 37, 568578.10.1111/pim.12273CrossRefGoogle ScholarPubMed
Veríssimo, CM, Graeff-Teixeira, C, Jones, MK and Morassutti, AL (2019) Glycans in the roles of parasitological diagnosis and host-parasite interplay. Parasitology 146, 12171232.10.1017/S0031182019000465CrossRefGoogle ScholarPubMed
Wang, QP, Lai, DH, Zhu, XQ, Chen, XG and Lun, ZR (2008) Human angiostrongyliasis. Lancet Infectious Diseases 8, 621630.CrossRefGoogle ScholarPubMed
Wang, S, Zhu, X, Yang, Y, Yang, J, Gu, Y, Wei, J, Hao, R, Boireau, P and Cui, S (2009) Molecular cloning and characterization of heat shock protein 70 from Trichinella spiralis. Acta Tropica 110, 4651.10.1016/j.actatropica.2009.01.003CrossRefGoogle ScholarPubMed
Whittaker, CA and Hynes, RO (2002) Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Molecular Biology of the Cell 13, 33693387.CrossRefGoogle Scholar
Xu, L, Xu, M, Sun, X, Xu, J, Zeng, X, Shan, D, Yuan, D, He, P, He, W, Yang, Y, Luo, S, Wei, J, Wu, X, Liu, Z, Xu, X, Dong, Z, Song, L, Zhang, B, Yu, Z, Wang, L, Zhang, C, Fang, X, Gao, Q, Lv, Z and Wu, Z (2019) The genetic basis of adaptive evolution in parasitic environment from the Angiostrongylus cantonensis genome. PLoS Neglected Tropical Diseases 13, e0007846.10.1371/journal.pntd.0007846CrossRefGoogle ScholarPubMed
Yong, HS, Eamsobhana, P, Lim, PE, Razali, R, Aziz, FA, Rosli, NSM, Poole-Johnson, J and Anwar, A (2015 a) Draft genome of neurotropic nematode parasite Angiostrongylus cantonensis, causative agent of human eosinophilic meningitis. Acta Tropica 148, 5157.10.1016/j.actatropica.2015.04.012CrossRefGoogle ScholarPubMed
Yong, HS, Song, SL, Eamsobhana, P, Goh, SY and Lim, PE (2015 b) Complete mitochondrial genome reveals genetic diversity of Angiostrongylus cantonensis (Nematoda: Angiostrongylidae). Acta Tropica 152, 157164.10.1016/j.actatropica.2015.09.001CrossRefGoogle Scholar
Yu, L, Cao, B, Long, Y, Tukayo, M, Feng, C, Fang, W and Luo, D (2017) Comparative transcriptomic analysis of two important life stages of Angiostrongylus cantonensis: fifth-stage larvae and female adults. Genetics and Molecular Biology 40, 540549.10.1590/1678-4685-gmb-2016-0274CrossRefGoogle ScholarPubMed
Zhan, B, Arumugam, S, Kennedy, MW, Tricoche, N, Lian, LY, Asojo, OA, Bennuru, S, Bottazzi, ME, Hotez, PJ, Lustigman, S and Klei, TR (2018) Ligand binding properties of two Brugia malayi fatty acid and retinol (FAR) binding proteins and their vaccine efficacies against challenge infection in gerbils. PLoS Neglected Tropical Diseases 12, e0006772.10.1371/journal.pntd.0006772CrossRefGoogle ScholarPubMed
Zhang, H, Zhou, Q, Yang, Y, Chen, X, Yan, B and Du, A (2013) Characterization of heat shock protein 70 gene from Haemonchus contortus and its expression and promoter analysis in Caenorhabditis elegans. Parasitology 140, 683694.10.1017/S0031182012002168CrossRefGoogle ScholarPubMed
Zhou, Y, Zheng, H, Chen, Y, Zhang, L, Wang, K, Guo, J, Huang, Z, Zhang, B, Huang, W, Jin, K, Dou, T, Hasegawa, M, Wang, L, Zhang, Y, Zhou, J, Tao, L, Cao, Z, Li, Y, Vinar, T, Brejova, B, Brown, D, Li, M, Miller, DJ, Blair, D, Zhong, Y, Chen, Z, Liu, F, Hu, W, Wang, ZQ, Zhang, QH, Song, HD, Chen, S, Xu, X, Xu, B, Ju, C, Huang, Y, Brindley, PJ, McManus, DP, Feng, Z, Han, ZG, Lu, G, Ren, S, Wang, Y, Gu, W, Kang, H, Chen, J, Chen, X, Chen, S, Wang, L, Yan, J, Wang, B, Lv, X, Jin, L, Wang, B, Pu, S, Zhang, X, Zhang, W, Hu, Q, Zhu, G, Wang, J, Yu, J, Wang, J, Yang, H, Ning, Z, Beriman, M, Wei, CL, Ruan, Y, Zhao, G and Wang, S (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460, 345351.Google Scholar
Supplementary material: File

de Mattos Pereira et al. supplementary material

de Mattos Pereira et al. supplementary material

Download de Mattos Pereira et al. supplementary material(File)
File 7 MB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

De novo transcriptome reveals blood coagulation/antithrombin factors and infection mechanisms in Angiostrongylus cantonensis adult worms
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

De novo transcriptome reveals blood coagulation/antithrombin factors and infection mechanisms in Angiostrongylus cantonensis adult worms
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

De novo transcriptome reveals blood coagulation/antithrombin factors and infection mechanisms in Angiostrongylus cantonensis adult worms
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *