Hostname: page-component-594f858ff7-wfvfs Total loading time: 0 Render date: 2023-06-06T17:44:43.271Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": false, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

How Did It All Begin?: The Self-Assembly of Organic Molecules and the Origin of Cellular Life

Published online by Cambridge University Press:  26 July 2017

David W. Deamer*
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064 USA
Get access


Movies are the myths of late-20th century western culture. Because of the power of films like ET to capture our imagination, we are more likely than past generations to accept the possibility that life exists elsewhere in our galaxy. Such a myth can be used to sketch the main themes of this chapter, which concern the origin of life on the Earth.

Section 3: Evidence for Evolution
Copyright © 1999, 2002 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Anders, E. 1989. Pre-biotic organic matter from comets and asteroids. Nature, 342:255257.CrossRefGoogle ScholarPubMed
Bada, J. L., Bigham, C., and Miller, S. L. 1994. Impact melting of frozen oceans on the early Earth—Implications for the origin of life. Proceedings of the National Academy of Sciences USA, 91:1248.CrossRefGoogle ScholarPubMed
Baross, J. A., and Hoffman, S. E. 1995. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life, 15:327.Google Scholar
Beaudry, A. A., and Joyce, G. F. 1992. Directed evolution of an RNA enzyme. Science, 342:255257.Google Scholar
Been, M. D., and Cech, T. R. 1988. RNA as an RNA Polymerase: Net Elongation of an RNA Primer Catalyzed by the Tetrahymena Ribozyme. Science, 239:14121416.CrossRefGoogle ScholarPubMed
Chakrabarti, A., Breaker, R. R., Joyce, G. F., and Deamer, D. W. 1994. Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. Journal of Molecular Evolution, 39:555559.CrossRefGoogle ScholarPubMed
Chyba, C. F., and Sagan, C. 1992. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origin of life. Nature, 355:125–13.CrossRefGoogle Scholar
Corliss, J. B., Baross, J. A., and Hoffman, S. E. 1981. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. 26th international geological congress; Colloquium C4, Geology of oceans, Oceanologica Acta, 4 (suppl.):5969.Google Scholar
Cronin, J. R., Pizzarello, S., and Cruickshank, D. P. 1988. Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets, p. 819857. In Kerridge, J. F. and Matthews, M. S. (eds.), Meteorites and the Early Solar System. University of Arizona Press, Tucson, AZ.Google Scholar
Deamer, D. W. 1998. Membrane compartments in prebiotic evolution, p. 189205. In Brack, A. (ed.), The Molecular Origins of Life. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Deamer, D. W., and Chakrabarti, A. 1999. The first living organisms: In the light or in the dark? ChemTracts, 12(6):453467.Google Scholar
Delsemme, A. 1984. The cometary connection with prebiotic chemistry. Origins of Life, 14:5160.CrossRefGoogle Scholar
Ferris, J. P., and Hagan, W. J. 1984. HCN and chemical evolution: The possible role of cyano compounds in prebiotic synthesis. Tetrahedron, 40:1093.CrossRefGoogle ScholarPubMed
Fox, S. W., and Harada, K. 1958. Thermal copolymerization of amino acids to a product resembling protein. Science, 128:1214.CrossRefGoogle ScholarPubMed
Gavino, V., and Deamer, D. W. 1982. Purification of acyl CoA: 1-acyl-sn-glycerophosphorylcholine acyltransferase. Journal of Bioenergetics and Biomembranes, 14:513526.CrossRefGoogle ScholarPubMed
Goldacre, R. J. 1958. Surface films: Their collapse on compression, the shapes and sizes of cells, and the origin of life, p. 1227. In Danielli, J. F., Pankhurst, K. G. A., and Riddiford, A. C. (eds.), Surface Phenomena in Biology and Chemistry. Pergamon Press, New York.Google Scholar
Haldane, J. B. S. 1929. The Origin of Life. The Rationalist Annual, 148:310.Google Scholar
Hargreaves, W. R., and Deamer, D. W. 1978. Liposomes from ionic, single-chain amphiphiles. Biochemistry, 17:37593768.CrossRefGoogle ScholarPubMed
Hargreaves, W. R., Mulvihill, S., and Deamer, D. W. 1977. Synthesis of phospholipids and membranes in prebiotic conditions. Nature, 266:7880.CrossRefGoogle ScholarPubMed
Holland, H. D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, NJ.Google ScholarPubMed
Joyce, G. F., Schwartz, A. W., Miller, S. L., and Orgel, L. E. 1987. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proceedings of the National Academy of Sciences USA, 84:4398.CrossRefGoogle ScholarPubMed
Kasting, J., and Ackerman, T. F. 1986. Climatic consequences of very high carbon dioxide levels in the Earth's early atmosphere. Science, 234:1383.CrossRefGoogle ScholarPubMed
Kvenvolden, K. A., Lawless, J. G., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. R., and Moore, C. 1970. Evidence for extraterrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature, 28:923.CrossRefGoogle Scholar
Miller, S. L. 1953. Production of amino acids under possible primitive Earth conditions. Science, 117:528.CrossRefGoogle ScholarPubMed
Miller, S. L., and Urey, H. C. 1959. Organic compounds synthesized on the primitive Earth. Science, 130:245.CrossRefGoogle Scholar
Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., and Friend, C. R. L. 1996. Evidence for life on Earth before 3,800 million years ago. Nature, 384:5559.CrossRefGoogle ScholarPubMed
Monnard, P.-A., Vercoutere, W., and Deamer, D. W. (Unpublished results.) Google Scholar
Oro, J. 1961. Comets and the formation of biochemical compounds on the primitive Earth. Nature, 190:389390.CrossRefGoogle Scholar
Oro, J., Sherwood, E., Eichberg, J., and Epps, D. 1978. Formation of phospholipids under primitive Earth conditions and the role of membranes in prebiological evolution, p. 121. In Deamer, D. W. (ed.), Light-Transducing Membranes: Structure, Function and Evolution. New York: Academic Press.Google Scholar
Pace, N. R. 1991. Origin of life—Facing up to the physical setting. Cell, 65:531.CrossRefGoogle Scholar
Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science, 276:734740.CrossRefGoogle ScholarPubMed
Paula, S., Volkov, A. G., Van Hoek, A. N., Haines, T. H., and Deamer, D. W. 1996. Permeation of protons, potassium ions and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophysical Journal, 70:339348.CrossRefGoogle ScholarPubMed
Schopf, J. W., and Packer, B. M. 1987. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science, 237:70.Google ScholarPubMed
Stevens, T. O., and McKinley, J. P. 1995. Lithoautotrophic Microbia, Ecosystems in Deep Basalt Aquifers. Science, 270:450454.CrossRefGoogle Scholar
Usher, D. 1977. Early chemical evolution of nucleic acids: A theoretical model. Science, 196:311313.CrossRefGoogle ScholarPubMed
Wilson, C., and Szostak, J. W. 1994. In vitro evolution of a self-alkylating ribozyme. Nature, 374:777.CrossRefGoogle ScholarPubMed
Woese, C. R. 1987. Bacterial evolution. Microbiology Review, 51:221.Google ScholarPubMed
Wright, M. C., and Joyce, G. F. Continuous in vitro evolution of catalytic function. 1997. Science, 274:1309.Google Scholar