Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-03T09:59:27.389Z Has data issue: false hasContentIssue false

Variation in the eye of Acuticryphops (Phacopina, Trilobita) and its evolutionary significance: a biometric and morphometric approach

Published online by Cambridge University Press:  08 February 2016

Catherine Crônier
Affiliation:
Université des Sciences et Technologies de Lille 1, UMR 8014 du CNRS, Laboratoire de Paléontologie et Paléogéographie du Paléozoïque, 59655 Villeneuve d'Ascq Cedex, France. E-mail: Catherine.cronier@univ-lillel.fr
Raimund Feist
Affiliation:
Institut des Sciences de l'Evolution, UMR 5554 du CNRS, CC064, Université Montpellier II, 34095 Montpellier Cedex 05, France
Jean-Christophe Auffray
Affiliation:
Institut des Sciences de l'Evolution, UMR 5554 du CNRS, CC064, Université Montpellier II, 34095 Montpellier Cedex 05, France

Abstract

Distributional patterns of eye lens variation in different morphs of the phacopine trilobite Acuticryphops acuticeps (Kayser 1889) are investigated. The specimens were collected from the latest Frasnian preceding the Upper Kellwasser (UKW) global extinction event in the Frasnian-Famennian (Late Devonian) stratotype section at Coumiac, southern France. In six successive populations a gradual reduction in the mean number of lenses occurs within the short time span of a single conodont Zone. This morphological change cannot be imputed either to the size of individual specimens or to variation in cephalic morphology. Thus morphs with different numbers of eye lenses are considered intraspecific. However, the intrapopulational percentage relation between morphs does not remain constant, as the coefficient of variation in lens number continuously increases from one population to the next. Cases of individuals with asymmetric eyes appear in the two latest assemblages prior to the UKW level. The fact that the total variation of the shape of the cephalon is not affected in these assemblages suggests that the morphological changes observed in the visual complex may account for the relaxation of selective pressures on this trait. Such a change in the regime of selection would have been accompanied by a lessening of the processes that control the development of this trait. As the phenomenon of eye reduction is not restrained by local conditions at Coumiac (Montagne Noire) but occurs contemporaneously to various extents in other crustal blocks such as Rhenish Slate Mountains (Avalonia), Thuringia (Armorica), and Morocco (Northern Gondwana), it is considered as constituting an adaptation to global eustatic deepening that occurred in the terminal Frasnian just before the global extinction event.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Auffray, J.-C., Debat, V., and Alibert, P. 1999. Shape asymmetry and developmental stability. Pp. 310324in Chaplain, M. et al., eds. On growth and form: spatiotemporal patterning in biology. Wiley, Chichester, U.K.Google Scholar
Beckmann, H. 1951. Zur Ontogenie der Sehfläche großäugiger Phacopiden. Paläonologische Zeitschrift 24:126141.CrossRefGoogle Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data-geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Clarke, G. M. 1998a. The genetic basis of developmental stability. IV. Individual and population asymmetry parameters. Heredity 80:553561.CrossRefGoogle Scholar
Clarke, G. M. 1998b. The genetic basis of developmental stability. V. Inter- and intra-individual character variation. Heredity 80:562567.CrossRefGoogle Scholar
Clarkson, E. N. K. 1975. The evolution of the eye in trilobites. Fossils and Strata 4:731.CrossRefGoogle Scholar
Crônier, C. 1999. Modalités d'évolution phylétique sous contrôle du milieu chez quelques phacopinés (trilobites) néodévoniens. Geobios 32:187192.CrossRefGoogle Scholar
Crônier, C., and Clarkson, E. N. K. 2001. Variation of eye-lens distribution in a new late Devonian phacopid trilobite. Transactions of the Royal Society of Edinburgh (Earth Sciences) 92:103113.CrossRefGoogle Scholar
Crônier, C., and Feist, R. 2000. Evolution et systématique du groupe Cryphops (Trilobita, Phacopinae) du Dévonien supérieur. Senckenbergiana Lethaea 79:501515.CrossRefGoogle Scholar
Debat, V., and David, P. 2001. Mapping phenotypes: canalization, plasticity and developmental stability. Trends in Ecology and Evolution 16:555561.CrossRefGoogle Scholar
Debat, V., Paradis, E., David, P., and Auffray, J.-C. 2000. Independence between developmental stability and canalisation in the skull of the house mouse. Proceedings of the Royal Society of London B 267:423430.CrossRefGoogle ScholarPubMed
Eldredge, N. 1972. Systematics and evolution of Phacops rana (Green, 1832) and Phacops iowensis Delo, 1935 (Trilobita) from the Middle Devonian of North America. Bulletin of the American Museum of Natural History 147:45114.Google Scholar
Eldredge, N. 1973. Systematics of Lower and Lower Middle Devonian species of the trilobite Phacops Emmrich in North America. Bulletin of the American Museum Natural History 151:285338.Google Scholar
Feist, R. 1991. The late Devonian trilobite crises. Historical Biology 5:197214.CrossRefGoogle Scholar
Feist, R. 1995. Effect of paedomorphosis in eye reduction on patterns of evolution and extinction in trilobites. Pp. 225244in McNamara, K. J., ed. Evolutionary change and heterochrony. Wiley, Chichester, New York.Google Scholar
Feist, R. 2002. Trilobites from the latest Frasnian Kellwasser Crisis in North Africa (Mrirt, Central Moroccan Meseta). Acta Palaeontologica Polonica 47:203210.Google Scholar
Feist, R., and Clarkson, E. N. K. 1989. Environmentally controlled phyletic evolution, blindness and extinction in Late Devonian tropidocoryphine trilobites. Lethaia 22:359373.CrossRefGoogle Scholar
Feist, R., and Schindler, E. 1994. Trilobites during Frasnian Kellwasser Crisis in European Late Devonian cephalopod limestones. Courier Forschungsinstitut Senckenberg 169:195223.Google Scholar
Fordyce, D., and Cronin, T. W. 1993. Trilobite vision: a comparison of schizochroal and holochroal eyes with the compound eyes of modern arthropods. Paleobiology 19:288303.CrossRefGoogle Scholar
Fortey, R. A., and Morris, S. F. 1977. Variation in lens packing of Phacops (Trilobita). Geological Magazine 114:2532.CrossRefGoogle Scholar
Fortey, R. A., and Owens, R. M. 1990. Trilobita. Pp. 121142in McNamara, K. J., ed. Evolutionary trends. Belhaven, London.Google Scholar
Girard, C., and Feist, R. 1997. Eustatic trends in conodont diversity across the Frasnian-Famennian boundary in the stratotype area, Montagne Noire, Southern France. Lethaia 29:329337.CrossRefGoogle Scholar
Horváth, G., Clarkson, E. N. K., and Pix, W. 1997. Survey of modern counterparts of schizochroal trilobite eyes: structural and functional similarities and differences. Historical Biology 12:229263.CrossRefGoogle Scholar
Johnson, J. G., Klapper, G., and Sandberg, C. A. 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin 96:567587.2.0.CO;2>CrossRefGoogle Scholar
Jones, J. S. 1987. An asymmetrical view of fitness. Nature 325:298299.CrossRefGoogle Scholar
Klapper, G. 1988. The Montagne Noire Frasnian (Upper Devonian) conodont succession. Pp. 449459in McMillan, N. J., Embry, A. F., and Glass, D. J., eds. Devonian of the world. Canadian Society of Petroleum Geologists 14:449459.Google Scholar
Klapper, G., and Becker, R. T. 1999. Comparison of Frasnian (Upper Devonian) conodont zonations. Bollettino della Società Paleontologica Italiana 37:339348.Google Scholar
Klapper, G., Feist, R., Becker, R. T., and House, M. R. 1993. Definition of the Frasnian/Famennian Stage boundary. Episodes 16:433441.CrossRefGoogle Scholar
Klingenberg, C. P., and McIntyre, G. S. 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52:13631375.CrossRefGoogle ScholarPubMed
Lieberman, B. S., and Dudgeon, S. 1996. An evaluation of stabilizing selection as a mechanism for stasis. Palaeogeography, Palaeoclimatology, Palaeoecology 127:229238.CrossRefGoogle Scholar
Lieberman, B. S., Brett, C. E., and Eldredge, N. 1995. Patterns and processes of stasis in two species lineages from the Middle Devonian of New York State. Paleobiology 21:1527.CrossRefGoogle Scholar
Lorenz, P. 1991. Die Variabilität und Ontogenie des Komplexauges von Phacops granulatus (Münster 1840). (Trilobita; Ober-Devon). Geologica et Palaeontologica 25:4755.Google Scholar
McCormick, T., and Fortey, R. A. 2002. The Ordovician trilobite Carolinites, a test case for microevolution in a macrofossil lineage. Palaeontology 45:229257.CrossRefGoogle Scholar
Moller, A. P., and Swaddle, J. P. 1997. Asymmetry, developmental stability, and evolution. Oxford University Press, Oxford.CrossRefGoogle Scholar
Parsons, P. A. 1992. Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity 68:361364.CrossRefGoogle ScholarPubMed
Parsons, P. A. 1993. Developmental stability and the limits of adaptation: interactions with stress. Genetica 89:245253.CrossRefGoogle Scholar
Richter, R., and Richter, E. 1926. Die Trilobiten des Oberdevons. Beiträge zur Kenntnis devonischer Trilobiten IV. Abhandlungen der preussischen geologischen Landesanstalt 99:1314.Google Scholar
Parsons, P. A. 1955. 1. Trilobiten aus der Prolobites-Stufe III. 2. Phylogenie der oberdevonischen Phacopidae. Senckenbergiana Lethaea 36:4972.Google Scholar
Rohlf, F. J. 1990. Fitting curves to outlines. Pp. 227236in Rohlf, F. J. and Bookstein, F. L., eds. Proceedings of the Michigan Morphometrics Workshop. University of Michigan Museum of Zoology, Ann Arbor.Google Scholar
Rohlf, F. J., and Slice, D. E. 1990. Extensions of the Procrustes methods for the optimal superimposition of landmarks. Systematic Zoology 39:4950.CrossRefGoogle Scholar
Selwood, E. B., and Burton, C. J. 1969. Possible dimorphism in certain Devonian phacopids (Trilobita). Pages 195200in G. Westermann, E. G., ed. Sexual dimorphism in fossil metazoa and taxonomic implications. Schweizerbart, Stuttgart.Google Scholar
Slice, D. E. 1993. Generalized Rotational Fitting of N-dimensional landmark Data (GRF-ND), Version 07-10–1993.Google Scholar
Smith, L. H. 1998a. Species level phenotypic variation in lower Paleozoic trilobites. Paleobiology 24:1736.CrossRefGoogle Scholar
Smith, L. H. 1998b. Asymmetry of early Paleozoic trilobites. Lethaia 31:99112.CrossRefGoogle Scholar
Smith, L. H., and Lieberman, B. S. 1999. Disparity and constraint in olenelloid trilobites and the Cambrian radiation. Paleobiology 25:459470.CrossRefGoogle Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy. W. H. Freeman, San Francisco.Google Scholar
Stockton, W. L., and Cowen, R. 1976. Stereoscopic vision in one eye: paleophysiology of the schizochroal eye of trilobites. Paleobiology 2:304315.CrossRefGoogle Scholar
Thomas, A. T. 1998. Variation in the eyes of the Silurian trilobites Eophacops and Acaste and its significance. Palaeontology 41:897911.Google Scholar
Waddington, C. H. 1957. The strategy of the genes. Macmillan, New York.Google Scholar
Weyer, D., Feist, R., and Girard, C.In press. Conodonta, Trilobita, and Anthozoa near the Late Frasnian Upper Kellwasser Event of the Geipel Quarry section in Schleiz, Thuringian Mountains (Germany). Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe 6, Berlin.Google Scholar
Ziegler, W., and Sandberg, C. A. 1990. The Late Devonian standard conodont zonation. Courier Forschungsinstitut Senckenberg 121:1115.Google Scholar