Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-11T15:51:09.079Z Has data issue: false hasContentIssue false

Selective extinction of late Neogene bivalves on the temperate Pacific coast of South America

Published online by Cambridge University Press:  20 May 2016

Marcelo M. Rivadeneira
Affiliation:
Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0116. E-mail: mrivaden@biomail.ucsd.edu
Pablo A. Marquet
Affiliation:
Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0116. E-mail: mrivaden@biomail.ucsd.edu

Abstract

We assessed selective extinction patterns in bivalves during a late Neogene mass extinction event observed along the temperate Pacific coast of South America. The analysis of 99 late Neogene and Quaternary fossil sites (recorded from 7°S to 55°S), yielding ∼2800 occurrences and 118 species, revealed an abrupt decline in Lyellian percentages during the late Neogene–Pleistocene, suggesting the existence of a mass extinction that decimated ∼66% of the original assemblage. Using the late Neogene data set (n = 59 species, 1346 occurrences), we tested whether the extinction was nonrandom according to taxonomic structure, life habit, geographic range, and body size. Our results showed that the number of higher taxa that went extinct was not different than expected by random. At first sight, extinction was selective only according to life habit and geographic range. Nevertheless, when phylogenetic effects were accounted for, body size also showed significant selectivity. In general, epifaunal, small-sized (after phylogenetic correction), and short-ranged species tended to have increased probability of extinction. This is verified by strong interactions between the variables herein analyzed, suggesting the existence of nonlinear effects on extinction chances. In the heavily decimated epifaunal forms, survival was not enhanced by widespread ranges or larger body sizes. Conversely, the widespread and large-sized infaunal forms tended to have lower probability of extinction. Overall, the ultimate extinction of late Neogene bivalve species along the Pacific coast of South America seems to have been determined by a complex interplay of ecological and historical (phylogenetic) effects.

Type
Articles
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allmon, W. D., Rosenberg, G., Portell, R. W., and Schindler, K. S. 1993. Diversity of Atlantic coastal plain mollusks since the Pliocene. Science 260: 16261628.Google Scholar
Alroy, J. 2001. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292: 18931896.Google Scholar
Banerjee, A. and Boyajian, G. 1996. Changing biologic selectivity of extinction in the Foraminifera over the past 150 m.y. Geology 24: 607610.Google Scholar
Bennett, P. M. and Owens, I. P F. 1997. Extinction-risk among birds: chance or evolutionary predisposition? Proceedings of the Royal Society of London B 264: 401408.Google Scholar
Berkman, P. A. and Prentice, M. 1996. Pliocene extinction of Antarctic pectinid mollusks. Science 271: 16061607.Google Scholar
Biro, L. 1979. Contribución al conocimiento de la Formación Tubul, Plioceno Superior, Provincia de Arauco (37° 14 Lat. Sur), Chile. II Congreso Geológico Chileno Actas 3: H33H43.Google Scholar
Buatois, L. A. and Encinas, A. 2006. La icnofacies de Glossifungites en el contacto entre las formaciones Navidad (Miembro Rapel) y La Cueva, Plioceno de la Cordillera de la Costa, Chile: su significado estratigráfico-secuencial. Ameghiniana 43: 39.Google Scholar
Cantalamessa, G., Di Celma, C., Ragaini, L., Valleri, G., and Landini, W. 2005. Neogene stratigraphic architecture and tectonic evolution of the Mejillones Peninsula (northern Chile) based on a new 1:50,000 geological map. Sixth international symposium on Andean geodynamics (ISAG 2005, Barcelona), Extended abstracts, pp. 142145.Google Scholar
Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R P., Sechrest, W., Orme, C. D L., and Purvis, A. 2005. Multiple causes of high extinction risk in large mammal species. Science 309: 12391241.Google Scholar
Coan, E., Scott, P. V., and Bernard, F. R. 2000. Bivalve seashells of Western North America: marine bivalve mollusks from arctic Alaska to Baja California. Santa Barbara Museum of Natural History Monographs No. 2.Google Scholar
Colwell, R. K. 2005. EstimateS: statistical estimation of species richness and shared species from samples, Version 7.5. User's guide and application published at http://purl.oclc.org/estimates.Google Scholar
Covacevich, V. and Frasinetti, D. 1986. El género Cancellaria en el Mioceno de Chile, con descripción de cuatro especies nuevas (Gastropoda: Cancellariidae). Revista Geológica de Chile 28-29: 3367.Google Scholar
Crame, J. A. 2000. Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of Recent bivalve faunas. Paleobiology 26: 188214.Google Scholar
Crawley, M. J. 2005. Statistics: an introduction using R. Wiley, New York.Google Scholar
De Muizon, C. and DeVries, T. J. 1985. Geology and paleontology of late Cenozoic marine deposits in the Sacaco area (Peru). Geologische Rundschau 74: 547563.Google Scholar
DeVries, T. J. 1985. Pliocene and Pleistocene counterparts of the modern Peruvian province: a molluscan record. Memorias del Sexto Congreso Latinoamericano de Geología 1: 301305.Google Scholar
DeVries, T. J. 2001. Contrasting patterns of Pliocene and Pleistocene extinctions of marine mollusks in Western North and South America. 97th annual meeting of the Geological Society of America.Google Scholar
DeVries, T. J. and Frassinetti, D. 2003. Range extensions and biogeographic implications of Chilean mollusks found in Peru. Boletín del Museo Nacional de Historia Natural (Chile) 52: 119135.Google Scholar
Dulvy, N. K. and Reynolds, J. D. 2002. Predicting extinction vulnerability in skates. Conservation Biology 16: 440450.Google Scholar
Dunbar, R. B., Marty, R. C., and Baker, P. A. 1990. Cenozoic marine sedimentation in the Sechura and Pisco basins, Peru. Palaeogeography, Palaeoclimatology, Palaeoecology 77: 235261.Google Scholar
Encinas, A., Finger, K. L., Nielsen, S. N., Lavenu, A., Buatois, L., and Peterson, D. E. 2005. Late Miocene coastal subsidence in Central Chile: tectonic implications. Sixth international symposium on Andean geodynamics (ISAG 2005, Barcelona), Extended abstracts, pp. 246249.Google Scholar
Encinas, A., Maksaev, V., Pinto, L., Le Roux, J. P., Munizaga, F., and Zentilli, M. 2006. Pliocene lahar deposits in the Coastal Cordillera of central Chile: implications for uplift, avalanche deposits, and porphyry copper systems in the Main Andean Cordillera. Journal of South American Earth Sciences 20: 369381.Google Scholar
Frassinetti, D. 1997. Moluscos del Plioceno superior marino de Isla Guafo, sur de Chile, Part I. Bivalvia. Boletín Museo Nacional de Historia Natural (Chile) 46: 5579.Google Scholar
Frassinetti, D. and Covacevich, V. 1993. Bivalvos del Mioceno marino de Matanzas (Formación Navidad, Chile central). Boletín Museo Nacional de Historia Natural (Chile) 44: 7397.Google Scholar
Frassinetti, D. and Covacevich, V. 1995. Moluscos del Plioceno Superior marino de Isla Guamblín, Archipiélago de los Chonos, sur de Chile. Revista Geológica de Chile 22: 4773.Google Scholar
Gilinsky, N. L. and Bennington, J. B. 1994. Estimating numbers of whole individuals from collections of body parts: a taphonomic limitation of paleontological record. Paleobiology 20: 245258.Google Scholar
Gittleman, J. L. and Kot, M. 1990. Adaptation: statistics and a null model for estimating phylogenetic effects. Systematic Zoology 39: 227241.Google Scholar
Gittleman, J. L. and Purvis, A. 1998. Body size and species-richness in carnivores and primates. Proceedings of the Royal Society of London B 265: 113119.Google Scholar
Gordillo, S. 1999. Holocene molluscan assemblages in the Magellan region. Scientia Marina 63: (Suppl. 1). 1522.Google Scholar
Guzmán, N., Marquardt, C., Ortlieb, L., and Frassinetti, D. 2000. La malacofauna Neógena y Cuaternaria del área de Caldera (27-28°S): especies y rangos bioestratigraficos. IX Congreso Geologico Chileno, Puerto Varas, Chile 1: 476481.Google Scholar
Harvey, P. H. and Pagel, M. D. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.Google Scholar
Helly, J. and Levin, L. A. 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Research 51: 11591168.Google Scholar
Herm, D. 1969. Marines Pliozän und Pleistozän in Nord und Mittel Chile unter besonderen Berücksichtigung der Entwicklung der Mollusken-Faunen. Zitteliana 2: 1159.Google Scholar
Ibaraki, M. 1997. Closing of the central American seaway and Neogene coastal upwelling along the Pacific coast of America. Tectonophysics 281: 99104.Google Scholar
Jablonski, D. 1995. Extinctions in the fossil record. pp. 2544in May, R. M. and Lawton, J. H., eds. Extinction rates. Oxford University Press, Oxford.Google Scholar
Jablonski, D. 2005. Mass extinctions and macroevolution. In Vrba, E. S. and Eldredge, N., eds. Macroevolution: diversity, disparity, contingency. Paleobiology 31: (Suppl. No. 2). 192210.Google Scholar
Jablonski, D. and Raup, D. M. 1995. Selectivity of End-Cretaceous marine bivalve extinctions. Science 268: 389391.Google Scholar
Jackson, J. B C., Jung, P., Coates, A. G., and Collins, L. S. 1993. Diversity and extinction of tropical American mollusks and emergence of the Isthmus of Panama. Science 260: 16241625.Google Scholar
Johnson, K. G. and Curry, G. B. 2001. Regional biotic turnover dynamics in the Plio-Pleistocene molluscan fauna of the Wanganui Basin, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 3951.Google Scholar
Jones, K. E., Purvis, A., and Gittleman, J. L. 2003. Biological correlates of extinction risk. American Naturalist 161: 601614.Google Scholar
Landini, W., Bianucci, G., Carnevale, G., Ragaini, L., Sorbini, C., Valleri, G., Bisconti, M., Cantalamessa, G., and Celma, C. D. 2002. Late Pliocene fossils of Ecuador and their role in the development of the Panamic bioprovince after the rising of Central American Isthmus. Canadian Journal of Earth Sciences 39: 2741.Google Scholar
Le Roux, J. P., Olivares, D. M., Nielsen, S. N., Smith, N. D., Middleton, H., Fenner, J., and Ishman, S. E. 2004. Miocene-Pliocene bay sedimentation as controlled by regional crustal behavior, local tectonics and eustatic sea-level changes in the Coquimbo Formation at the Bay of Tongoy, central Chile. Sedimentary Geology 165: 6792.Google Scholar
Le Roux, J. P., Gómez, C., Venegas, C., Fenner, J., Middleton, H., Marchant, M., Buchbinder, B., Frassinetti, D., Marquardt, C., Gregory-Wodzicki, K. M., and Lavenu, A. 2005. Neogene-Quaternary coastal and offshore sedimentation in north central Chile: record of sea-level changes and implications for Andean tectonism. Journal of South American Earth Sciences 19: 8398.Google Scholar
Levin, L. A. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology: An Annual Review 41: 145.Google Scholar
Lindberg, D. R. 1991. Marine biotic interchange between the Northern and Southern Hemispheres. Paleobiology 17: 308324.Google Scholar
Lockwood, R. 2003. Abundance not linked to survival across the end-Cretaceous mass extinction: patterns in North American bivalves. Proceedings of the National Academy of Sciences USA 100: 24782482.Google Scholar
Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries. Paleobiology 31: 578590.Google Scholar
Marquardt, C., Blanco, N., Godoy, E., Lavenu, A., Ortlieb, L., Marchant, M., and Guzmán, N. 2000. Estratigrafía del Cenozoico Superior en el área de Caldera (26°45′-28°S). In IX Congreso Geológico Chileno,. Puerto Varas, Chile 2: 588592.Google Scholar
Marquet, P. A., Fernández, M., Navarrete, S. A., and Valdovinos, C. 2004. Diversity emerging: towards a deconstruction of biodiversity patterns. pp. 192209in Lomolino, M. and Heaney, L. R., eds. Frontiers of biogeography: new directions in the geography of nature. Cambridge University Press, Cambridge.Google Scholar
Martinez-Pardo, R. 1990. Major Neogene events of the Southeastern Pacific: the Chilean and Peruvian record. Palaeogeography, Palaeoclimatology, Palaeoecology 77: 263278.Google Scholar
McKinney, M. L. 1995. Extinction selectivity among lower taxa: gradational patterns and rarefaction error in extinction estimates. Paleobiology 21: 300313.Google Scholar
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28: 495516.Google Scholar
McRoberts, C. A. and Newton, C. R. 1995. Selective extinction among end-Triassic European bivalves. Geology 23: 102104.Google Scholar
Millard, V. 2003. Classification of Mollusca. a classification of worldwide Mollusca. Printed by the author, Rhine Road, South Africa.Google Scholar
Morales, C. E., Hormázabal, S. E., and Blanco, J. L. 1999. Interannual variability in the mesoscale distribution of the depth of the upper boundary of the oxygen minimum layer off northern Chile (18-24°S): implications for the pelagic system and biogeochemical cycling. Journal of Marine Research 57: 909932.Google Scholar
Moran, M. D. 2003. Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100: 403405.Google Scholar
Nielsen, S. N., Vietor, T., Echtler, H., Lamy, F., Finger, K. L., Peterson, D., and Frassinetti, D. 2005. Late Cenozoic climate indicators in marine sediments of southern Chile: indications for the expansion of the circum-Antarctic cryosphere and impact on strength of the subduction zone. Sixth international symposium on Andean geodynamics (ISAG 2005, Barcelona), Extended abstracts, pp. 552554.Google Scholar
Norris, R. D. 1991. Biased extinction and evolutionary trends. Paleobiology 17: 388399.Google Scholar
Ortlieb, L., DeVries, T., and Díaz, A. 1990. Ocurrencia de Chione broggi (Pilsbry and Olsson, 1943) (Pelecypoda) en depósitos litorales Cuaternarios del sur del Perú: implicaciones paleoceanográficas. Boletín de la Sociedad Geológica del Peru 81: 127134.Google Scholar
Ortlieb, L., Guzmán, N., and Candia, M. 1994. Moluscos litorales del Pleistoceno superior en el área de Antofagasta, Chile: primeras determinaciones e indicaciones paleoceanográficas. Estudios Oceanológicos 13: 5763.Google Scholar
Ortlieb, L., Goy, J. L., Zazo, C., Hillaire-Marcel, C. L., and Vargas, G. 1995. Late Quaternary coastal changes in northern Chile. Guidebook for a fieldtrip, second annual meeting of the International Geological Correlation Program (IGCP), Project 367. ORSTOM, Antofagasta, Chile.Google Scholar
Ortlieb, L., Díaz, A., and Guzmán, N. 1996. A warm interglacial episode during oxygen isotope stage 11 in northern Chile. Quaternary Science Reviews 15: 857-587.Google Scholar
Ortlieb, L., Guzmán, N., and Vargas, G. 1997. A composite (Pliocene/early Pleistocene) age for the “Antofagasta terrace” of northern Chile. VII Congreso Geológico Chileno, Antofagasta, Chile 1: 200204.Google Scholar
Paradis, E., Strimmer, K., Claude, J., Jobb, G., Opgen-Rhein, R., Dutheil, J., Noel, Y., and Bolker, B. 2005. APE: Analyses of Phylogenetics and Evolution. R package, Version 1.5.Google Scholar
Paskoff, R., Leonard, E. M., Novoa, J. E., Ortlieb, L., Radtke, U., and Wehmiller, J. F. 1995. Field meeting in the La Serena-Coquimbo Bay area (Chile). ORSTOM, Antofagasta, Chile. 69 p.Google Scholar
Peters, R. H. 1983. Ecological implications of body size. Cambridge University Press, Cambridge.Google Scholar
Philippi, R. A. 1887. Los fósiles Terciarios i Cuartarios de Chile. F. A. Brockhaus, Leipzig.Google Scholar
Purvis, A., Agapow, P., Gittleman, J. L., and Mace, G. M. 2000a. Nonrandom extinction and the loss of evolutionary history. Science 288: 328330.Google Scholar
Purvis, A., Gittleman, J. L., Cowlishaw, G., and Mace, G. M. 2000b. Predicting extinction risk in declining species. Proceedings of the Royal Society of London B 267: 19471952.Google Scholar
R Development Core Team. 2004. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.Google Scholar
Radtke, U. 1987. Marine terraces in Chile (22°-32°S)—geomorphology, chronostratigraphy and neotectonics: preliminary results II. Quaternary of South America and Antarctic Peninsula 5: 239256.Google Scholar
Raffi, S., Stanley, S. M., and Marasti, R. 1985. Biogeographic patterns and Plio-Pleistocene extinction of Bivalvia in the Mediterranean and southern North Sea. Paleobiology 11: 368388.Google Scholar
Ravelo, A. C., Andreasen, D. H., Lyle, M., Lyle, A. O., and Wara, M. W. 2004. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429: 263267.Google Scholar
Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223225.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 2000. Dissecting latitudinal diversity gradients: functional groups and clades of marine bivalves. Proceedings of the Royal Society of London B 267: 293299.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 2001. Climate change, species range limits and body size in marine bivalves. Ecology Letters 4: 366370.Google Scholar
Russell, G. J., Brooks, T. M., McKinney, M., and Anderson, C. G. 1998. Present and future taxonomic selectivity in bird and mammal extinctions. Conservation Biology 12: 13651376.Google Scholar
Schwartz, M. W. and Simberloff, D. 2001. Taxon size predicts rates of rarity in vascular plants. Ecology Letters 4: 464469.Google Scholar
Smith, F. A., Brown, J. H., Haskell, J. P., Alroy, J., Charnov, E. L., Dayan, T., Enquist, B. J., Ernest, S. K M., Hadly, E. A., Jablonski, D., Jones, K. E., Kaufman, D. M., Lyons, S. K., Marquet, P., Maurer, B. A., Niklas, K., Porter, W., Roy, K., Tiffney, B., and Willig, M. R. 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist 163: 672691.Google Scholar
Smith, J. T. and Roy, K. 2006. Selectivity during background extinction: Plio-Pleistocene scallops of California. Paleobiology 32: 408416.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12: 89110.Google Scholar
Stanley, S. M. and Campbell, L. D. 1981. Neogene mass extinction of western Atlantic mollusks. Nature 293: 457459.Google Scholar
Stanley, S. M., Addicott, W. O., and Chinzei, K. 1980. Lyellian curves in paleontology: possibilities and limitations. Geology 8: 422426.Google Scholar
Todd, J. A., Jackson, J. B C., Johnson, K. G., Fortunato, H. M., Heitz, A., Alvarez, M., and Jung, P. 2002. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London B 269: 571577.Google Scholar
Tsuchi, R. 1997. Marine climatic responses to Neogene tectonics of the Pacific Ocean seaways. Tectonophysics 281: 113124.Google Scholar
Tsuchi, R. 2002. Neogene evolution of surface marine climate in the Pacific and notes on related events. Revista Mexicana de Ciencias Geológicas 19: 260270.Google Scholar
Valdovinos, C. 1996. Evolutive stasis of a benthic community during the retraction of the Magellan Province: analysis of an assemblage of organisms with hard skeletons from the Plio-Pleistocene and recent limits. Berichte zur Polarforschung 190: 8284.Google Scholar
Valdovinos, C. 1999. Biodiversidad de moluscos chilenos: base de datos taxonómica y distribucional. Gayana Zoología 63: 111164.Google Scholar
Valdovinos, C., Navarrete, S. A., and Marquet, P. A. 2003. Mollusk species diversity in the southeastern Pacific: why are there more species towards the pole? Ecography 26: 139144.Google Scholar
Watters, W. A. and Fleming, C. A. 1972. Contributions to the geology and palaeontology of Chiloe Island, southern Chile. Philosophical Transactions of the Royal Society of London B 263: 369408.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.Google Scholar
Supplementary material: File

Rivadeneira and Marquet supplementary material

Supplementary Tables S1-S2

Download Rivadeneira and Marquet supplementary material(File)
File 15.4 KB