Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T18:47:06.707Z Has data issue: false hasContentIssue false

The origin and early diversification of birds

Published online by Cambridge University Press:  08 April 2016

Joel Cracraft*
Affiliation:
Department of Invertebrates, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024
*
Permanent address after 1 September 1986: Department of Anatomy, University of Illinois, Chicago, Illinois 60680

Abstract

Numerical cladistic analysis of 73 cranial and postcranial characters has resulted in a highly corroborated hypothesis describing the phylogenetic pattern of early avian evolution. Using “non-avian theropod” dinosaurs as a comparative outgroup and root for the tree, the analysis confirmed Archaeopteryx to be the sister-group of all remaining avian taxa, or Ornithurae. This latter taxon is subdivided into two lineages, the Hesperornithiformes and the Carinatae. The carinates, in turn, were also resolved into two sister-groups, the Ichthyornithiformes and the modern birds, or Neornithes. This paper provides morphological data corroborating the divergence of the two basal clades of the Neornithes: the Palaeognathae (tinamous and ratites) and Neognathae (all other modern birds). The phylogenetic relationships of four important Cretaceous taxa were also investigated, but these fossil taxa were too fragmentary to determine their phylogenetic position unambiguously. Alexornis and Ambiortus are both carinates, but their relationships cannot be resolved in greater detail. The relationships of the Enantiornithes may lie within the Carinatae or these two taxa may be sister-groups. Gobipteryx is a neornithine and possibly the sister-group of the Palaeognathae.

This analysis indicates that major patterns of morphological change took place at the time of origin of the ancestors of the Ornithurae and the Carinatae. Ornithurine innovations included major changes throughout the skeleton, whereas those of the carinates, while substantial, were primarily restricted to the pectoral girdle and forelimb. The phylogenetic results, in conjunction with the known ages of fossil taxa, indicate that the early lineages of birds very likely arose in the Jurassic. The early cladistic events within the neornithine lineage are also more ancient than generally recognized, and may well extend back to the early Cretaceous.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvarenga, H. M. F. 1983. Uma ave ratitae do Paleoceno Brasileiro: bacia calcaria de Itaborai, Estado do Rio de Janeiro, Brasil. Bol. Mus. Nac. (Rio de Janerio). 41:18.Google Scholar
Barsbold, R. 1983. Carnivorous dinosaurs from the Cretaceous of Mongolia. Trans. Jt. Sov.-Mongol. Palaeont. Exp. 19:5117. [in Russian].Google Scholar
Bock, W. J. 1963. The cranial evidence for ratite affinities. Proc. 13th Intern. Ornithol. Congr.:3954.Google Scholar
Boer, L. E. M. D. 1980. Do the chromosomes of the kiwi provide evidence for a monophyletic origin of the ratites? Nature. 287:8485.Google Scholar
Brett-Surman, M. K. and Paul, G. S. 1985. A new family of bird-like dinosaurs linking Laurasia and Gondwanaland. J. Vert. Paleontol. 5:133138.CrossRefGoogle Scholar
Brodkorb, P. 1976. Discovery of a Cretaceous bird apparently ancestral to the orders Coraciiformes and Piciformes (Aves: Carinatae). Smithson. Contr. Paleobiol. 27:6773.Google Scholar
Colbert, E. H. and Russell, D. A. 1969. The small Cretaceous dinosaur Dromaeosaurus. Am. Mus. Nov. 2380:149.Google Scholar
Cracraft, J. 1974. Phylogeny and evolution of the ratite birds. Ibis. 116:494521.CrossRefGoogle Scholar
Cracraft, J. 1981. Toward a phylogenetic classification of the Recent birds of the world (Class Aves). Auk. 98:681714.Google Scholar
Cracraft, J. 1982a. Phylogenetic relationships and monophyly of loons, grebes, and hesperomithiform birds, with comments on the early history of birds. Syst. Zool. 31:3556.Google Scholar
Cracraft, J. 1982b. Phylogenetic relationships and transantarctic biogeography of some gruiform birds. Geobios, Spec. Mem. 6:393402.CrossRefGoogle Scholar
DeBeer, G. R. 1954. Archaeopteryx lithographica. A Study Based upon the British Museum Specimen. Brit. Mus. (Nat. Hist.); London.Google Scholar
Edlredge, N. and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. Columbia Univ. Press; New York.Google Scholar
Elzanowski, A. 1974. Preliminary note on the palaeognathous bird from the Upper Cretaceous of Mongolia. Palaeontol. Polon. 30:103109.Google Scholar
Elzanowski, A. 1976. Palaeognathous bird from the Cretaceous of Central Asia. Nature. 264:5153.Google Scholar
Elzanowski, A. 1977. Skulls of Gobipteryx (Aves) from the Upper Cretaceous of Mongolia. Palaeontol. Polon. 37:153165.Google Scholar
Elzanowski, A. 1981. Embryonic bird skeletons from the Late Cretaceous of Mongolia. Palaeontol. Polon. 42:147179.Google Scholar
Farris, J. S. 1972. Estimating phylogenetic trees from distance matrices. Am. Nat. 106:645668.CrossRefGoogle Scholar
Feduccia, A. 1980. The Age of Birds. Harvard Univ. Press; Cambridge.Google Scholar
Feduccia, A. 1985. The morphological evidence for ratite monophyly: fact or fiction. Proc. 18th Int. Ornithol. Congr. 1:184190.Google Scholar
Gauthier, J. 1986. Saurischian monophyly and the origin of birds. Mem. Calif. Acad. Sci. 8, in press.Google Scholar
Gauthier, J. and Padian, K. 1985. Phylogenetic, functional, and aerodynamic analyses of the origin of birds and their flight. Pp. 185197. In: Hecht, M. K., Ostrom, J. H., Viohl, G., and Wellnhofer, P., eds. The Beginnings of Birds. Freunde des Jura-Museums; Eichstatt.Google Scholar
Gingerich, P. D. 1973. Skull of Hesperornis and early evolution of birds. Nature. 243:7073.Google Scholar
Gingerich, P. D. 1976. Evolutionary significance of the Mesozoic toothed birds. Smithson. Contr. Paleobiol. 27:2333.Google Scholar
Heilmann, G. 1926. The Origin of Birds. Witherby; London.Google Scholar
Hecht, M. K., Ostrom, J. H., Viohl, G., and Wellnhofer, P. (eds.). 1985. The beginnings of birds. Freunde des Jura-Museums; Eichstatt.Google Scholar
Hou, L. and Liu, Z. 1984. A new fossil bird from Lower Cretaceous of Gansu and early evolution of birds. Sci. Sin. (ser. B) 27(12):1296-1302.Google Scholar
Houde, P. and Olson, S. L. 1981. Paleognathous carinate birds from the Early Tertiary of North America. Science. 214:12361237.Google Scholar
Huxley, T. H. 1868. On the animals which are most nearly intermediate between birds and reptiles. Ann. Mag. Nat. Hist. 4(ser. 2):66-75.Google Scholar
Jollie, M. T. 1957. The head skeleton of the chicken and remarks on the anatomy of this region in other birds. J. Morphol. 100:389436.Google Scholar
Kluge, A. and Farris, J. S. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18:132.Google Scholar
Kurochkin, E. N. 1982. [New order of birds from the Lower Cretaceous of Mongolia]. Dokl. Akad. Nauk SSSR 262:452455.Google Scholar
Kurochkin, E. N. 1985a. A true carinate bird from the Lower Cretaceous deposits in Mongolia and other evidence of early Cretaceous birds in Asia. Cretaceous Res. 6:271278.Google Scholar
Kurochkin, E. N. 1985b. Lower Cretaceous birds from Mongolia and their evolutionary significance. Proc. 18th Int. Omithol. Congr. (Moscow) 1:191199.Google Scholar
Maddison, W. P., Donoghue, M. J., and Maddison, D. R. 1984. Outgroup analysis and parsimony. Syst. Zool. 33:83103.CrossRefGoogle Scholar
Madsen, J. H. Jr. 1976. Allosaurus fragilis: a revised osteology. Bull. Utah Geol. Min. Surv. 109:1163.Google Scholar
Marsh, O. C. 1880. Odontornithes: a monograph on the extinct toothed birds of North America. U.S. Geol. Explor. 40th Parallel. 201 pp.Google Scholar
Martin, L. D. 1983a. The origin and early radiation of birds. Pp. 291338. In: Brush, A. H. and Clark, G. A. Jr., eds. Perspectives in Ornithology. Cambridge Univ. Press; New York.Google Scholar
Martin, L. D. 1983b. The origin of birds and of avian flight. Curr. Omithol. 1:105129.Google Scholar
Martin, L. D. 1985. The relationship of Archaeopteryx to other birds. Pp. 177183. In: Hecht, M. K., Ostrom, J. H., Viohl, G., and Wellnhofer, P., eds. The Beginnings of Birds. Freunde des Jura-Museums; Eichstatt.Google Scholar
Martin, L. D. and Stewart, J. D. 1985. Homologies in the avian tarsus. Nature. 315:159160.Google Scholar
Martin, L. D., Stewart, J. D., and Whetstone, K. N. 1980. The origin of birds: structure of the tarsus and teeth. Auk. 97:8693.Google Scholar
Martin, L. D. and Tate, J. Jr. 1976. The skeleton of Baptornis advenus (Aves: Hesperornithiformes). Smithson. Contr. Paleobiol. 27:3566.CrossRefGoogle Scholar
Mayr, F. X. 1973. Ein neuer Archaeopteryx-Fund. Paläontol. Z. 47:1724.Google Scholar
McGowan, C. 1984. Evolutionary relationships of ratites and carinates: evidence from ontogeny of the tarsus. Nature. 307:733735.Google Scholar
McGowan, C. 1985a. Tarsal development in birds: evidence for homology with the theropod condition. J. Zool. 206:5367.Google Scholar
McGowan, C. 1985b. [Reply to Martin and Stewart 1985]. Nature. 315:160.Google Scholar
Nelson, G. J. and Platnick, N. I. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia Univ. Press; New York.Google Scholar
Nicholls, E. L. and Russell, A. P. 1985. Structure and function of the pectoral girdle and forelimb of Struthiomimus altus (Theropoda: Ornithomimidae). Paleontology. 28:643677.Google Scholar
Olson, S. L. 1985. The fossil record of birds. Avian Biol. 8:79238.Google Scholar
Osborn, H. F. 1906. Tyrannosaurus, Upper Cretaceous carnivorous dinosaur. (Second communication). Bull. Am. Mus. Nat. Hist. 22:281296.Google Scholar
Osborn, H. F. 1912. Part 1. Crania of Tyrannosaurus and Allosaurus. Mem. Am. Mus. Nat. Hist. 1(new ser.):3-30.Google Scholar
Osmolska, H. 1981. Coossified tarsometatarsi in theropod dinosaurs and their bearing on the problem of bird origins. Palaeontol. Polon. 42:7995.Google Scholar
Osmolska, H., Roniewicz, E., and Barsbold, R. 1972. Results of the Polish-Mongolian paleontological expeditions. IV. A new dinosaur, Gallimimus bullatus n. gen., n. sp. (Ornithomimidae) from the Upper Cretaceous of Mongolia. Palaeontol. Polon. 27:103143.Google Scholar
Ostrom, J. H. 1969. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Bull. Peabody Mus. Nat. Hist. 30:1165.Google Scholar
Ostrom, J. H. 1974. Archaeopteryx and the origin of flight. Q. Rev. Biol. 49:2747.Google Scholar
Ostrom, J. H. 1975a. The origin of birds. Ann. Rev. Earth Planet. Sci. 3:5577.Google Scholar
Ostrom, J. H. 1975b. On the origin of Archaeopteryx and the ancestry of birds. Proc. Centre Nat. Rech. Sci., Colloq. Internat. 218. Problèmes Actuels de Paleontologie—Evolution des Vertébrés:519-532.Google Scholar
Ostrom, J. H. 1976a. Archaeopteryx and the origin of birds. Biol. J. Linn. Soc. 8:91182.CrossRefGoogle Scholar
Ostrom, J. H. 1976b. Some hypothetical anatomical stages in the evolution of avian flight. Smithson. Contrib. Paleobiol. 27:121.Google Scholar
Owen, R. 1863. On the Archaeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Phil. Trans. Roy. Soc. London. 153:3347.Google Scholar
Padian, K. 1982. Macroevolution and the origin of major adaptations: vertebrate flight as a paradigm for the analysis of patterns. Proc. 3d N. Am. Paleontol. Conv. 2:387392.Google Scholar
Parkes, K. C. and Clark, G. A. Jr. 1966. An additional character linking ratites and tinamous, and an interpretation of their monophyly. Condor. 68:459471.Google Scholar
Prager, E. M., Wilson, A. C., Osuga, D. T., and Feeney, R. E. 1976. Evolution of flightless land birds on southern continents: transferrin comparison shows monophyletic origin of ratites. J. Mol. Evol. 8:283294.Google Scholar
Rich, P. 1979. The Dromornithidae, an extinct family of large ground birds endemic to Australia. Bur. Nat. Res., Geol. and Geophys. Bull. no. 184.Google Scholar
Rich, P. 1980. The Australian Dromornithidae: a group of extinct large ratites. Contr. Sci. Nat. Hist. Mus. Los Angeles Co. 330:93103.Google Scholar
Sibley, C. G. 1970. A comparative study of the egg-white proteins of passerine birds. Peabody Mus. Nat. Hist. Bull. 32:1131.Google Scholar
Sibley, C. G. and Ahlquist, J. E. 1972. A comparative study of the egg-white proteins of non-passerine birds. Peabody Mus. Nat. Hist. Bull. 39:1276.Google Scholar
Sibley, C. G. and Ahlquist, J. E. 1981. The phylogeny and relationships of the ratite birds as indicated by DNA-DNA hybridization. Pp. 301335. In: Scudder, G. G. E. and Reveal, J. L., eds. Evolution Today. Proc. 2d Int. Congr. Syst. Evol. Biol.Google Scholar
Stapel, S. O., Leunissen, J. A. M., Versteeg, M., Wattel, J., and De Jong, W. 1984. Ratites as oldest offshoot of avian stem—evidence from [alpha]-crystallin A sequences. Nature. 311:257259.Google Scholar
Steadman, D. 1983. Commentary. Pp. 338344. In: Brush, A. H. and Clark, G. A., eds. Perspectives on Ornithology. Cambridge Univ. Press; New York.Google Scholar
Swofford, D. L. 1985. PAUP, Phylogenetic Analysis Using Parsimony program manual. Illinois Nat. Hist. Surv.; Champaign.Google Scholar
Tarsitano, S. and Hecht, M. K. 1980. A reconsideration of the reptilian relationships of Archaeopteryx. Zool. J. Linn. Soc. 69:149182.CrossRefGoogle Scholar
Thulborn, R. A. 1975. Dinosaur polyphyly and the classification of archosaurs and birds. Aust. J. Zool. 23:249270.CrossRefGoogle Scholar
Thulborn, R. A. 1984. The avian relationships of Archaeopteryx, and the origin of birds. Zool. J. Linn. Soc. 82:119158.Google Scholar
Thulborn, R. A. and Hamley, T. L. 1982. The reptilian relationships of Archaeopteryx. Aust. J. Zool. 30:611634.Google Scholar
Walker, A. 1985. The braincase of Archaeopteryx. Pp. 123134. In: Hecht, M. K., Ostrom, J. H., Viohl, G., and Wellnhofer, P., eds. The Beginnings of Birds. Freunde des Jura-Museums; Eichstatt.Google Scholar
Walker, C. A. 1981. New subclass of birds from the Cretaceous of South America. Nature. 292:5153.Google Scholar
Wellnhofer, P. 1974. Das fünfte Skelettexamplar von Archaeopteryx. Palaeontographica. 147A:169-216.Google Scholar
Wellnhofer, P. 1985. Remarks on the digit and pubis problem of Archaeopteryx. Pp. 113122. In: Hecht, M. K., Ostrom, J. H., Viohl, G., and Wellnhofer, P., eds. The Beginnings of Birds. Freunde des Jura-Museums; Eichstatt.Google Scholar
Whetstone, K. N. 1983. Braincase of Mesozoic birds. 1. New preparation of the “London” Archaeopteryx. J. Vert. Paleontol. 2:439452.Google Scholar
Wiley, E. O. 1981. Phylogenetics: the Theory and Practice of Phylogenetic Systematics. John Wiley; New York.Google Scholar