Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T20:40:58.727Z Has data issue: false hasContentIssue false

Isotopic evidence for interspecies habitat differences during evolution of the Neogene planktonic foraminiferal clade Globoconella

Published online by Cambridge University Press:  14 July 2015

Cynthia E. Schneider
Affiliation:
Department of Geological Sciences and Marine Science Institute, University of California Santa Barbara, California 93106
James P. Kennett
Affiliation:
Department of Geological Sciences and Marine Science Institute, University of California Santa Barbara, California 93106

Abstract

Oxygen and carbon isotopic analyses have been conducted on Miocene to Pliocene (6.0 to 2.9 Ma) members of the gradually evolving, deep-dwelling planktonic foraminiferal clade, Globoconella, in temperate waters of the southwest Pacific, Deep Sea Drilling Project (DSDP) Site 593. In the late Miocene the clade began with Globoconella conoidea, and continued through G. conomiozea, G. sphericomiozea, and G. puncticulata to the extant form G. inflata. Isotopic analyses were performed on ancestor-descendant species within the clade to determine if isotopic differences exist between these species which would, in turn, suggest depth and/or seasonal habitat differences and perhaps segregation, as well as ecological changes in the clade. Isotopic analyses were also conducted on the relatively shallow-dwelling planktonic foraminifer Orbulina universa and the benthic form Cibicidoides wuellerstorfi to determine if any relationships exist between the evolution of Globoconella and paleoceanographic/paleoclimatic change.

Small (usually 0.1–0.15 ‰ but up to 0.3 ‰) oxygen isotopic differences exist between ancestor and descendant forms that we believe represent small (∼1°) temperature differences. These temperature differences are inferred to indicate depth and/or seasonal habitat differences and possible segregation between the species during the gradual evolution. The largest differences in oxygen isotopic values occur between ancestor and descendant forms during the most conspicuous morphological transition within the clade near the Miocene/Pliocene boundary. During this interval, the clade underwent a transformation from conical to spherical forms and there was a loss of the keel. No consistent differences were observed between ancestor and descendant carbon isotopic values.

Both morphological and ecological evolution appear to have been associated with paleoceanographic/paleoclimatic changes. Intervals marked by warming of surface-to-upper intermediate waters are associated with evolution of forms with a spherical test and inferred adaptation to cooler waters relative to ancestral forms. We propose two alternative models for the evolution of the Globoconella clade. In the first model, we assume that depth and/or seasonal segregation between ancestor and descendant forms provided a partial barrier to gene flow and that evolution resulted from genetic drift and/or differential selective pressures acting on each morphotype. In the second model, we assume that coeval members of Globoconella formed a vertical and/or seasonal morphocline in the water column and that segregation did not provide an effective barrier to gene flow. Evolution proceeded as directional selection acted on morphotypes of Globoconella inhabiting selectively advantageous positions in the water column.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bandy, O. L. 1975. Messinian evaporite deposition and the Miocene/Pliocene boundary, Pasquasia–Capodarso Sections, Sicily. pp. 4963In Saito, T. and Burckle, L. H., eds. Late Neogene epoch boundaries. American Museum of Natural History Micropaleontology Press, New York.Google Scholar
, A. W. H. 1960. Ecology of Recent planktonic foraminifera, Part 2. Bathymetric and seasonal distributions in the Sargasso Sea off Bermuda. Micropaleontology 6:373392.Google Scholar
, A. W. H. 1977. An ecological, zoogeographic and taxonomic review of Recent planktonic foraminifera. pp. 1100In Ramsay, A. T. S., eds. Oceanic micropaleontology, Vol. 1. Academic Press, London.Google Scholar
, A. W. H., and Toderlund, D. S. 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Ocean. pp. 105149In Funnell, B. M. and Riedel, W. R., eds. Micropaleontology of oceans. Cambridge University Press, Cambridge.Google Scholar
, A. W. H., Bishop, J. K. B., Sverdlove, M. S., and Gardner, W. D. 1985. Standing stock vertical distribution and flux of planktonic foraminifera in the Panama Basin. Marine Micropaleontology 7:209222.Google Scholar
Berger, W. H. 1969. Ecologic patterns of living planktonic Foraminifera. Deep-Sea Research 16:124.Google Scholar
Berger, W. H., Killingly, J. S., and Vincent, E. 1978. Stable isotopes in deep sea carbonates: box core ERDC-92, west equatorial Pacific. Oceanologica Acta 1:203216.Google Scholar
Burckle, L. H., and Pokras, B. M. 1991. Implications of a Pliocene stand of Nothofagus (southern beech) within 500 kilometers of South Pole. Antarctic Science 3:389403.CrossRefGoogle Scholar
Cifelli, R. 1962. Some dynamic aspects of the distribution of planktonic foraminifera in the western North Atlantic. Journal of Marine Research 20:201213.Google Scholar
Cifelli, R., and Scott, G. 1986. Stratigraphic record of the Neogene Globorotalid radiation (planktonic Foraminiferida). Smithsonian Contributions to Paleobiology No. 58. Smithsonian Institution Press, Washington, D.C.Google Scholar
Curry, W. B., and Matthews, R. K. 1981. Equilibrium 18O fractionation in small size fraction of planktic foraminifera: evidence from Recent Indian Ocean sediments. Marine Micropaleontology 6:327337.Google Scholar
Curry, W. B., Thunell, R. C., and Honjo, S. 1983. Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps. Earth Planetary Science Letters 64:3344.CrossRefGoogle Scholar
Deuser, W. G. 1987. Seasonal variations in isotopic composition and deep-water fluxes of the tests of perennially abundant planktonic foraminifera of the Sargasso Sea: results from sediment-trap collections and their paleoceanographic significance. Journal of Foraminiferal Research 17:1427.CrossRefGoogle Scholar
Deuser, W. G., and Ross, E. H. 1989. Seasonally abundant planktonic foraminifera of the Sargasso Sea: succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications. Journal of Foraminiferal Research 19:268293.CrossRefGoogle Scholar
Deuser, W. G., Ross, E. H., Hemleben, C., and Spindler, M. 1981. Seasonal changes in species compositions, numbers, mass, size, and isotopic composition of planktonic foraminifera settling into the deep Sargasso Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 33:103127.CrossRefGoogle Scholar
Douglas, R. G., and Savin, S. M. 1978. Oxygen isotopic evidence for the depth stratification of Tertiary and Cretaceous planktonic foraminifera. Marine Micropaleontology 3:175196.CrossRefGoogle Scholar
Dowsett, H. J. 1988. Diachrony of late Neogene microfossils in the southwest Pacific Ocean: application of the graphic correlation method. Paleoceanography, 3:209222.CrossRefGoogle Scholar
Durazzi, J. T. 1981. Stable isotope studies of planktonic foraminifera in North Atlantic core tops. Palaeogeography, Palaeoclimatology, Palaeoecology 33:157172.CrossRefGoogle Scholar
Edwards, A. R. 1987. An integrated biostratigraphy, magnetostratigraphy and oxygen isotope stratigraphy for the late Neogene of New Zealand. New Zealand Geological Survey 23:180.Google Scholar
Emiliani, C. 1954. Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. American Journal of Science 252:149158.CrossRefGoogle Scholar
Emiliani, C. 1969. A new palentology. Micropaleontology 15:265300.CrossRefGoogle Scholar
Emiliani, C. 1971. Depth habitats of growth stages of pelagic foraminifera. Science 173:11221124.CrossRefGoogle ScholarPubMed
Erez, J. 1978. Vital effect on stable isotope composition seen in foraminifera and coral skeletons. Nature 273:199202.CrossRefGoogle Scholar
Erez, J., and Honjo, S. 1981. Comparison of isotopic composition of planktonic foraminifera in plankton tows, sediment traps and sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 33:129156.CrossRefGoogle Scholar
Fairbanks, R. G., and Weibe, P. H. 1980. Foraminifera and chlorophyll maximum: vertical distribution, seasonal succession, and paleoceanographic significance. Science 209:15241525.CrossRefGoogle ScholarPubMed
Fairbanks, R. G., Weibe, P. H., and Be, A. W. H. 1980. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic. Science 207:6163.CrossRefGoogle ScholarPubMed
Fairbanks, R. G., Sverdlove, R. F., Free, R., Wiebe, P. H., and , A. W. H. 1982. Vertical distribution and isotopic composition of living planktonic foraminifera from the Panama Basin. Nature 298:841844.CrossRefGoogle Scholar
Ganssen, G. 1983. Dokumentation von kustennahem Auftrieb an-hand stabiler Isotope in rezenten Foraminiferen vor Nordwest-Africa: “Meteor”. Forsch.-Ergeb., Reihe C 37:146.Google Scholar
Garner, D. M. 1962. Analysis of hydrological observations in the New Zealand region, 1874-1955. New Zealand Department of Scientific and Industrial Research Bulletin 144. New Zealand Oceanographic Institute Memoir 9:145.Google Scholar
Garner, D. M., and Ridgway, N. M. 1965. Hydrology of New Zealand offshore waters. New Zealand Department of Scientific and Industrial Research Bulletin 162. New Zealand Oceanographic Institute Memoir 12:162.Google Scholar
Gasperi, J. T., and Kennett, J. P. 1992 Isotopic evidence for depth stratification and paleoecology of Miocene planktonic foraminifera: western equatorial Pacific DSDP Site 289. pp. 117147. In Tsuchi, R. and Ingle, J. C., eds. Pacific Neogene. University of Tokyo Press, Tokyo.Google Scholar
Gasperi, J. T., and Kennett, J. P. 1993. Miocene planktonic foraminifers at DSDP Site 289: depth stratification using isotopic differences. pp. 323332. In Berger, W. H. and Kroenke, L. et al., eds. Proceedings Ocean Drilling Program, Scientific Results. College Station, Texas.CrossRefGoogle Scholar
Haq, B.U., Worsley, T. R., Burckle, L. H., Douglas, R. G., Keigwin, L. D., Opdyke, N. D., Savin, S. M., Sommer, M. A., Vincent, E., Woodruff, F. 1980. Late Miocene marine carbon-isotopic shift and synchroneity of some phytoplanktonic biostratigraphic events. Geology 8:427431.2.0.CO;2>CrossRefGoogle Scholar
Healy-Williams, N. 1983/84. Fourier shape analysis of Globorotalia truncatulinoides from late Quaternary sediments in the southern Indian Ocean. Marine Micropaleontology 8:115.CrossRefGoogle Scholar
Healy-Williams, N., and Williams, D. F. 1981. Fourier analysis of test shape of planktonic foraminifera. Nature 289:485487.CrossRefGoogle Scholar
Hemleben, C., and Spindler, M. 1983. Recent advances in research on living planktonic foraminifera. Reconstruction of Marine Paleoenvironments. Utrecht Micropaleontological Bulletin 30:141170.Google Scholar
Hemleben, C., Spindler, M., Breitinger, I., and Deuser, W. G. 1985. Field and laboratory studies on the ontogeny and ecology of some globorotalid species from the Sargasso Sea off Bermuda. Journal of Foraminiferal Research 15:15051512.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Hodell, D. A., and Kennett, J. P. 1986. Late Miocene–early Pliocene stratigraphy and paleoceanography of the south Atlantic and southwest Pacific oceans: a synthesis. Paleoceanography 1:285311.CrossRefGoogle Scholar
Hodell, D. A., and Vayavananda, A. 1993. Middle Miocene paleoceanography of the western equatorial Pacific (DSDP Site 289) and the evolution of Globorotalia (Fohsella). Marine Micropaleontology 22:279310.CrossRefGoogle Scholar
Hornibrook, N. de B. 1981. Globorotalia (planktic Foraminiferida) in the late Pliocene and early Pleistocene of New Zealand. New Zealand Journal of Geology and Geophysics 24:263292.CrossRefGoogle Scholar
Hornibrook, N. de B. 1982. Late Miocene to Pleistocene Globorotalia (Foraminiferida) from Deep Sea Drilling Project Leg 29, Site 284, southwest Pacific. New Zealand Journal of Geology and Geophysics 25:8399.CrossRefGoogle Scholar
Hornibrook, N. de B. 1990. The Neogene of New Zealand: a basis for regional events. pp. 195206In Tsuchi, R., eds. Pacific Neogene events: their timing, nature and interrelationship. Geoscience Institute, Shizuoka University, Shizuoka, Japan.Google Scholar
Jenkins, D. G. 1971. New Zealand Cenozoic planktonic foraminifera. New Zealand Geological Survey Paleontological Bulletin 42:1275.Google Scholar
Jenkins, D. G. 1975. Cenozoic planktonic foraminiferal biostratigraphy of the southwestern Pacific and Tasman Sea—DSDP Leg 29. pp. 449467. In Kennett, J. P., eds. Initial reports Deep Sea Drilling Project, 29. U.S. Government Printing Office, Washington, D.C.Google Scholar
Jenkins, D. G., and Srinivasan, M. S. 1986. Cenozoic planktonic foraminifers from the equator to the subantarctic of the southwest Pacific. pp. 795834. In Kennett, J. P. and von der Borch, C. C. et al., eds. Initial reports Deep Sea Drilling Project, 90. U.S. Government Printing Office, Washington, D.C.Google Scholar
Jones, J. I. 1968. The relationship of the planktonic foraminiferal populations to water masses in the western Caribbean and lower Gulf of Mexico. Bulletin of Marine Science 18:947982.Google Scholar
Keller, G. 1985. Depth stratification of planktonic foraminifers in the Miocene ocean. Geological Society of America Memoir 163:177195.CrossRefGoogle Scholar
Kennett, J. P. 1966. The Globorotalia crassaformis bioseries in north Westland and Marlborough. Micropaleontology 12:235245.CrossRefGoogle Scholar
Kennett, J. P. 1968. G. truncatulinoides as a paleo-oceanographic index. Science 159:14611463.CrossRefGoogle Scholar
Kennett, J. P., and Srinivasan, M. S. 1983. An atlas of Neogene planktonic foraminifera: phylogenetic approach. Hutchinson and Ross, Stroudsburg, Pa.Google Scholar
Kennett, J. P., and Vella, P. 1975. Late Cenozoic planktonic foraminifera and paleoceanography at DSDP Site 284 in the cool subtropical Pacific. pp. 769799. In Kennett, J. P., eds. Initial Reports Deep Sea Drilling Project, 29. U.S. Government Printing Office; Washington, D.C.CrossRefGoogle Scholar
Kennett, J. P., and Houtz, R. E., et al. 1975. Initial reports Deep Sea Drilling Project, 29. U.S. Government Printing Office, Washington, D.C.CrossRefGoogle Scholar
Kennett, J. P., and von der Borch, C. C. et al. 1986. Initial reports Deep Sea Drilling Project, 90. U.S. Government Printing Office, Washington, D.C.CrossRefGoogle Scholar
Lidz, B. 1972. Globorotalia crassaformis morphotype variations in Atlantic and Caribbean deep-sea cores. Micropaleontology 18:194211.CrossRefGoogle Scholar
Lidz, B., Kehn, H., and Miller, H. 1968. Depth habitats of pelagic foraminifera during the Pleistocene. Nature 217:245247.CrossRefGoogle Scholar
Lipps, J. H. 1970. Plankton evolution. Evolution 24:122.CrossRefGoogle ScholarPubMed
Lidz, B., Kehn, H., and Miller, H. 1979. Ecology and paleoecology of planktic foraminifera. pp. 62104. In Lipps, J. H. and Berger, W. H., eds. Foraminiferal ecology and paleoecology. Society of Economic Paleontologists and Mineralogists. Houston.Google Scholar
Lohman, W. H. 1986. Calcareous nannoplankton biostratigraphy of the southern Coral Sea, Tasman Sea, and southwestern Pacific Ocean, Deep Sea Drilling Project Leg 90: Neogene and Quaternary. pp. 763793. In Kennett, J. P. and von der Borch, C. C., eds. Initial reports Deep Sea Drilling Project, 90. U.S. Government Printing Office, Washington D.C.Google Scholar
Malmgren, B. A., and Berggren, W. A. 1987. Evolutionary changes in some late Neogene planktonic foraminiferal lineages and their relationships to paleoceanographic changes. Paleoceanography 2:445456.CrossRefGoogle Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage: DSDP Site 284, southwest Pacific. Paleobiology 7:230240.CrossRefGoogle Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E. 1993a. Evolution of depth ecology in the planktic foraminifera lineage Globorotalia (Fohsella). Geology 21:975978.2.3.CO;2>CrossRefGoogle Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E. 1993b. Evolutionary ecology of Globorotalia (Globoconella) (planktic foraminifera). Marine Micropaleontology 23:126.Google Scholar
Oba, T. 1969. Biostratigraphy and isotopic paleotemperature of some deep-sea cores from the Indian Ocean. Tohok. University Science Reports Series 2, 42:129195.Google Scholar
Oppo, D. W., and Fairbanks, R. G. 1989. Carbon isotope composition of tropical surface water during the past 22,000 years. Paleoceanography 4:333351.CrossRefGoogle Scholar
Pearson, P. N., Shackleton, N. J., and Hall, M. A. 1993. The stable isotope paleoecology of middle Eocene planktonic foraminifera and multi-species integrated isotope stratigraphy, DSDP Site 523, South Atlantic Journal of Foraminiferal Research 23:123140.CrossRefGoogle Scholar
Ravello, A. C., and Fairbanks, R. G. 1992. Oxygen isotope composition of multiple species of planktonic foraminifera: recorder of modern photic zone temperature gradient. Paleoceanography 7:815832.CrossRefGoogle Scholar
Reynolds, L. A., and Thunell, R. C. 1985. Seasonal succession of planktonic foraminifera in the subpolar North Pacific. Journal of Foraminiferal Research 15: 282–248.CrossRefGoogle Scholar
Savin, S. M., and Douglas, R. G. 1973. Stable isotope and magnesium geochemistry of Recent planktonic foraminifera from the South Pacific. Geological Society of America Bulletin 84:23272342.2.0.CO;2>CrossRefGoogle Scholar
Scott, G. H. 1980a. Globorotalia inflata lineage and G. crassaformis from the Blind River, New Zealand: recognition, relationship, and use in uppermost Miocene–Lower Pliocene biostratigraphy. New Zealand Journal of Geology and Geophysics 23(5/6):665677.CrossRefGoogle Scholar
Scott, G. H. 1980b. Upper Miocene biostratigraphy: does Globorotalia conomiozea occur in the Messinian? Revista Espanola de Micropaleontologia 12:489506.Google Scholar
Scott, G. H. 1982. Tempo and stratigraphic record of speciation in Globorotalia puncticulata. Journal of Foraminiferal Research 12:112.CrossRefGoogle Scholar
Scott, G. H. 1983. Biostratigraphy and histories of Upper Miocene-Pliocene Globorotalia, South Atlantic and Southwest Pacific. Marine Micropaleontology 7:369383.CrossRefGoogle Scholar
Scott, G. H., Bishop, S., and Burt, B. J. 1990. Guide to some Neogene Globorotalids (Foraminiferida) from New Zealand. New Zealand Geological Survey Paleontological Bulletin 61. New Zealand Geological Survey, Lower Hutt, New Zealand.Google Scholar
Schneider, C. E., and Kennett, J. P. 1991. Oxygen isotopic evidence for seasonal or vertical segregation of ancestor and descendant species within the Neogene planktonic foraminiferal lineage Globorotalia (Globoconella). Geological Society of America Abstracts with Programs: 23:A34.Google Scholar
Spero, H. J., and DeNiro, M. 1987. The influence of symbiont photosynthesis on the δ18O and δ13C values of planktonic foraminiferal shell calcite. Symbiosis 4:213228.Google Scholar
Spero, H. J., and Williams, D. F. 1988. Extracting environmental information from planktonic foraminiferal δ13C data. Nature 335:717719.CrossRefGoogle Scholar
Srinivasan, M. S., and Kennett, J. P. 1981a. A review of Neogene planktonic foraminiferal biostratigraphy: applications in the equatorial and South Pacific. pp. 395432. In Warme, J. E. and Douglas, R. G., eds. The deep sea drilling project: a decade of progress, Society of Economic Paleontologists and Mineralogists Special Publication No. 32.Google Scholar
Srinivasan, M. S., and Kennett, J. P. 1981b. Neogene planktonic foraminiferal biostratigraphy: equatorial to subantarctic, South Pacific. Marine Micropaleontology 6:499534.CrossRefGoogle Scholar
Takayanagi, Y., Nitsuma, N., and Sakai, T. 1968. Wall structure of Globorotalia truncatulinoides d'Orbigny. Science report of Tohoku University, 2d series (geology) 40:141170.Google Scholar
Tolderlund, D. S., and , A. W. H. 1971. Seasonal distribution of planktonic foraminifera in the western Atlantic. Micropaleontology 17:297329.CrossRefGoogle Scholar
Vrba, E. S. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81:229236.Google Scholar
Walters, R. 1965. The Globorotalia zealandica and G. miozea lineage. New Zealand Journal of Geology and Geophysics 8:109127.CrossRefGoogle Scholar
Wei, K.-Y. 1987. Multivariate morphometric differentiation of chronospecies in the late Neogene planktonic foraminiferal lineage Globoconella. Marine Micropaleontology 12:183202.CrossRefGoogle Scholar
Wei, K.-Y., and Kennett, J. P. 1988. Phyletic gradualism and punctuated equilibrium in the late Neogene planktonic foraminifera clade Globoconella. Paleobiology 14:345363.CrossRefGoogle Scholar
Williams, D. F., and Healy-Williams, N. 1980. Oxygen isotopic-hydrographic relationships among recent planktonic foraminifera from the Indian Ocean. Nature 283:848852.CrossRefGoogle Scholar
Williams, D. F., , A. W. H., and Fairbanks, R. G. 1979. Seasonal oxygen isotopic variations in living planktonic foraminifera off Bermuda. Science 201:252254.CrossRefGoogle Scholar
Williams, D. F., , A. W. H., and Fairbanks, R. G. 1981. Seasonal stable isotope variations in living planktonic foraminifera from the Sargasso Sea off Bermuda. Palaeogeography, Palaeoclimatology, Palaeoecology 33:71102.CrossRefGoogle Scholar
Williams, D. F., Ehrlich, R., Spero, H. J., Healy-Williams, N., and Gary, A. C. 1988. Shape and isotopic differences between conspecific foraminiferal morphotypes and resolution of paleoceanographic events. Palaeogeography, Palaeoclimatology, Palaeoecology 64:153162.CrossRefGoogle Scholar