Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T07:44:04.243Z Has data issue: false hasContentIssue false

Geometric regularity of some oblique sculptures in pectinid and other bivalves: recognition by computer simulations

Published online by Cambridge University Press:  08 April 2016

Itaru Hayami
Affiliation:
Geological Institute, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan
Takashi Okamoto
Affiliation:
Geological Institute, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan

Abstract

The geometric regularity of oblique sculptures in pectinids and some other bivalves was examined both theoretically and empirically. Camptonectes microsculpture occurs exclusively on the external surface of foliated calcite, and is well characterized by an invariably orthogonal relation to growth increments and almost uniform density over the surface. It is genetically unrelated to radial and other sculpturing. According to our SEM observations, its divergent orientation seems to be controlled primarily by the growth of calcite laths. In contrast, the shagreen microsculpture of pectinids is characterized by a quincunx arrangement of scales on the diagonal network. Shagreen microsculpture can be regarded as a variant of diagonal sculpture together with the simple oblique, divaricate, V-shaped, and zigzag patterns that are widespread in other bivalves. The geometric regularity of these variations as well as their mutual relationship can be readily recognized by computer simulations. All of these diagonal sculptures may result from interference between radial and commarginal elements. The formation of diagonal sculptures seems to occur by the periodic activation of regularly arranged sculpture-producing cells on the mantle margin.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbott, R. T. and Dance, S. P. 1982. Compendium of Seashells. E. P. Dutton; New York.Google Scholar
Boyd, D. W. and Newell, N. D. 1984. Vestigial shell structure in silicified pectinacean pelecypods. Contr. Geol. Univ. Wyoming. 23:18.Google Scholar
Bucquoy, E., Dautzenberg, P., and Dollfus, F. F. 1887–1898. Les mollusques marins du Roussilon. Pélécypodes. Baillière et Fils; Paris.Google Scholar
Cox, L. R. et al. 1969. Treatise on Invertebrate Paleontology. Part N, Vol. 1, Mollusca 6. Geol. Soc. Am. and Univ. Kansas Press; Lawrence.Google Scholar
Dall, W. H. 1898. Contributions to the Tertiary fauna of Florida. Part 4. Trans. Wagner Free Inst. Sci. Phila. 3:571974.Google Scholar
Dhondt, A. V. 1972. Systematic revision of the Chlamydinae of the European Cretaceous. Part 1. Camptonectes. Bull. Inst. Roy. Sci. Nat. Belg. 48(3):1-60.Google Scholar
Fatton, E. and Bongrain, M. 1980. Stades juvéniles de coquilles de pectinidés (bivalves): observations au microscope électronique a balayage. Bull. Mus. Nat. Hist. Paris. [4] 2:291319.Google Scholar
Girty, G. H. 1908. The Guadalupian fauna. U.S. Geol. Surv. Prof. Pap. 58:1651.Google Scholar
Habe, T. 1977. Systematics of Mollusca in Japan. Bivalvia and Scaphopoda. Hokuryukan; Tokyo [in Japanese].Google Scholar
Hayami, I. 1984. Natural history and evolution of Cryptopecten (a Cenozoic-Recent pectinid genus). Bull. Univ. Mus. Univ. Tokyo. 10:1149.Google Scholar
Hayami, I. and Noda, M. 1977. Notes on the morphology of Neithea (Cretaceous pectinids) with taxonomic revision of Japanese species. Trans. Proc. Palaeontol. Soc. Japan, n.s. 105:2754.Google Scholar
Jaworski, E. 1915. Die Fauna der obertriadischen Nuculamergel von Misol. Paläontol. von Timor. 2:73174.Google Scholar
Johnson, A. L. A. 1984. The palaeobiology of the bivalve families Pectinidae and Propeamussiidae in the Jurassic of Europe. Zitteliana. 11:1235.Google Scholar
Krumbeck, L. 1913. Obere Trias von Buru und Misol. Beiträge zur Geologie von Niederländisch-Indien. Palaeontographica. Suppl. 4. 2:(1):1161.Google Scholar
Lindsay, D. T. 1982a. Simulating molluscan shell pigment lines and states: implications for pattern diversity. Veliger. 24:297299.Google Scholar
Lindsay, D. T. 1982b. A new programmatic basis for shell pigment patterns in the bivalve mollusc Lioconcha castrensis (L.). Differentiation. 21:3236.Google Scholar
Masuda, K. 1962. Tertiary Pectinidae of Japan. Sci. Rept. Tohoku Univ. [2] 33:117238.Google Scholar
Newell, N. D. 1937–1938. Late Paleozoic pelecypods: Pectinacea. Kansas State Geol. Surv. Bull. 10:1123 [1937], pls. 1–20 [1938].Google Scholar
Newell, N. D. and Boyd, D. W. 1985. Notes on micro-fabric in Upper Paleozoic scallops. Am. Mus. Novitates. 2816:16.Google Scholar
Nordsieck, F. 1969. Die europäischen Meeresmuscheln (Bivalvia). Gustav Fischer Verlag; Stuttgart.Google Scholar
Philippi, E. 1900. Beiträge zur Morphologie und Phylogenie der Lamellibranchier. II. Zur Stammesgeschichte der Pectiniden. Z. Deut. Geol. Gesell. 52:64117.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. J. Paleontol. 40:11781190.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-morphologie. Lethaia. 3:393396.Google Scholar
Seilacher, A. 1972. Divaricate patterns in pelecypod shells. Lethaia. 5:325343.Google Scholar
Seilacher, A. 1984. Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology. 27:207237.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habit in the Bivalvia (Mollusca). Geol. Soc. Am. Mem. 125:1296.Google Scholar
Stanley, S. M. 1977. Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. Palaeontology. 20:869899.Google Scholar
Stanley, S. M. 1978. Aspects of the adaptive morphology and evolution of the Trigoniidae. Phil. Trans. Roy. Soc. London. 284B:247-258.Google Scholar
Stephenson, L. W. 1952. Larger invertebrate fossils of the Woodbine Formation (Cenomanian) of Texas. U.S. Geol. Surv. Prof. Pap. 242:1226.Google Scholar
Tashiro, M. 1976. Bivalve faunas of the Cretaceous Himenoura Group in Kyushu. Palaeontol. Soc. Japan, Spec. Pap. 19:1102.Google Scholar
Tashiro, M. 1982. A new pectinid genus Nippononectes from the Cretaceous of Japan. Mem. Fac. Sci. Kochi Univ. [E] 3:16.Google Scholar
Taylor, J. D., Kennedy, W. J., and Hall, A. 1969. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea–Trigoniacea. Bull. Brit. Mus. (Nat. Hist.), Zoology. Suppl. 3:1125.Google Scholar
Wada, K. 1963a. On the spiral growth of the inner surface of the calcitic shell, Anomia lischkei. I. Bull. Japan. Soc. Sci. Fish. 29:320324.Google Scholar
Wada, K. 1963b. On the spiral growth of the inner surface of the calcitic shell, Ostrea gigas. II. Bull. Japan. Soc. Sci. Fish. 29:447451.CrossRefGoogle Scholar
Wada, K. 1964. On the spiral growth of the inner surface of the calcitic shell, Chlamys nobilis. III. Bull. Japan. Soc. Sci. Fish. 30:127131.Google Scholar
Waddington, C. H. and Cowe, R. J. 1969. Computer simulation of a molluscan pigmentation pattern. J. Theoret. Biol. 25:219225.Google Scholar
Waller, T. R. 1972a. The Pectinidae (Mollusca: Bivalvia) of Eniwetok atoll, Marshall Islands. Veliger. 14:221264.Google Scholar
Waller, T. R. 1972b. The functional significance of some shell structures in the Pectinacea (Mollusca: Bivalvia). Int. Geol. Congr. 24th Sess. Montreal. 7:4856.Google Scholar
Waller, T. R. 1984. The ctenolium of scallop shells: functional morphology and evolution of a key family-level character in the Pectinacea (Mollusca: Bivalvia). Malacologia. 25:203219.Google Scholar
Woods, H. 1902. A Monograph of the Cretaceous Lamellibranchia of England. Part 4. Pectinidae. Palaeontogr. Soc. London.Google Scholar