Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-04T09:16:05.876Z Has data issue: false hasContentIssue false

Evidence for advanced carnivory in fossil armadillos (Mammalia: Xenarthra: Dasypodidae)

Published online by Cambridge University Press:  08 April 2016

Sergio F. Vizcaíno
Affiliation:
Departamento Científico Paleontología de Vertebrados, Museo de La Plata. Paseo del Bosque s/n, 1900 La Plata, Argentina. E-mail: vizcaino@museo.fcnym.unlp.edu.ar
Gerardo De Iuliis
Affiliation:
Faculty of Community Services and Health Sciences, George Brown College, Toronto, Ontario M5A 1J5, Canada Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada. E-mail: gerry@zoo.utoronto.ca

Abstract

The euphractine Macroeuphractus outesi, from the late Pliocene Chapadmalalan SALMA of Buenos Aires Province, Argentina, is one of the largest dasypodids known. Its skull preserves features remarkable for an armadillo. Its complete dental arcade and large caniniform teeth have received attention in the literature as indicative of scavenging behavior. This report considers the degree of carnivory within the context of the generally omnivorous feeding behavior of euphractine armadillos through morphological and biomechanical analyses. Morphological analyses reveal that the main differences between M. outesi and other euphractines are the enlargement of the cranium, particularly of the temporal fossa; more prominent muscular scars for origin of the temporalis muscle; a more expanded rostrum, particularly in dorsoventral height; a more powerful anterior dentition, especially in the great enlargement and caniniform modification of M2; and a deeper and more robust zygomatic arch. Biomechanical analyses indicate that the moment arm of the temporalis musculature is greater than that recorded for other armadillos. These analyses indicate that the temporalis was probably larger and played a more important role in Macroeuphractus than in other euphractines, a pattern that is more usual for carnivorous mammals. Combined with the second upper molariform, which is caniniform, the features suggest that Macroeuphractus occupied an extreme position in the carnivorous-omnivorous feeding behavior of euphractines. Its large size indicates that it could have easily preyed on hare-sized vertebrates.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. McN. 1983. Animal mechanics, 2d ed.Blackwell Scientific, London.Google Scholar
Ameghino, F. 1895. Sur les édentés fosiles de l'Argentine. Revista Jardín Zoológico de Buenos Aires (1ra. Epoca) 3:97192.Google Scholar
Ameghino, F. 1910 (1934). Geología, paleogeografía, paleontología y antropología de la República Argentina. Obras Completas 18:297335.Google Scholar
Bargo, M. S. 2001. The ground sloth Megatherium americanum: skull shape, bite forces, and diet. In Vizcaíno, S. F., Fariña, R. A., and Janis, C., eds. Biomechanics and paleobiology of vertebrates Acta Palaeontologica Polonica Special Issue 46(2):4160.Google Scholar
Benson, R. H., Chapman, R. E., and Siegel, A. F. 1982. On the measurement of morphology and its change. Paleobiology 8:328339.Google Scholar
Biknevicius, A. R., and Van Valkenburgh, B. 1996. Design for killing: craniodental adaptations of predators. Pp. 393428in Gittleman, J. L., ed. Carnivore behavior, ecology, and evolution, Vol. 2. Cornell University Press, Ithaca, N.Y.Google Scholar
Bond, M., Cerdeño, E., and López, G. 1995. Los ungulados nativos de América del Sur. In Alberdi, M. T., Leone, G., and Tonni, E. P., eds. Evolución biológica y climática de la región Pampeana durante los últimos cinco millones de años: un ensayo de correlación con el Mediterráneo Occidental. Monografías del Museo Nacional de Ciencias Naturales 12:260–275. Madrid.Google Scholar
Carlini, A. A., and Scillato-Yané, G. J. 1996. Chorobates recens (Xenarthra, Dasypodidae) y un análisis de la filogenia de los euphractini. Revista del Museo de La Plata (NS), Paleontología IX 59:225238.Google Scholar
Castellanos, A. 1947. Nuevos restos de coraza de los generos Proeuphractus and Macroeuphractus Ameghino descubiertos en el Araucanense del Valle de Yocavil (provincias de Catamarca y Tucumán). Publicaciones del Instituto Fisiográfico y Geológico de Rosario 32:3244.Google Scholar
Castellanos, A. 1958. Descripción preliminar de un craneo de “Macroeuphractus morenoi” (Lyd.) del Yocahuilense (Araucanense) del Valle de Yocahuil (Santa Maria) de las provincias de Catamarca, Tucumán y Salta. Acta Geológica Lilloana 2:191239. Tucumán.Google Scholar
Chapman, R. E. 1990a. Conventional Procrustes approaches. In Rohlf, F. J. and Bookstein, F. L., eds. Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication 2:251267.Google Scholar
Chapman, R. E. 1990b. Shape analysis in the study of dinosaur morphology. Pp. 2142in Carpenter, K. and Currie, P. J., eds. Dinosaur systematics: perspectives and approaches. Cambridge University Press, Cambridge.Google Scholar
De Iuliis, G., Bargo, M. S., and Vizcaíno, S. F. 2000. Variation in skull morphology and mastication in the fossil giant armadillos Pampatherium spp. and allied genera (Mammalia: Xenarthra: Pampatheriidae), with comments on their systematics and distribution. Journal of Vertebrate Paleontology 20:743754.Google Scholar
Delsuc, F., Catzfelis, F. M., Stanhope, M. J., and Douzery, E. J. P. 2001. The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of enigmatic fossil Eurotamandua. Proceedings of the Royal Society of London B 268:16051615.Google Scholar
Engelmann, G. F. 1985. The phylogeny of the Xenarthra. Pp. 5164in Montgomery, 1985.Google Scholar
Fariña, R. A., and Vizcaíno, S. F. 2001. Carved teeth and strange jaws: how glyptodonts masticated. In Vizcaíno, S. F., Fariña, R. A., and Janis, C., eds. Biomechanics and paleobiology of vertebrates. Acta Paleontologica Polonica Special Issue 46(2):87102.Google Scholar
Finch, A. E. 1982. The discovery and interpretation of Thylacoleo carnifex (Thylacoleonidae, Marsupialia). Pp. 537551in Archer, M., ed. Carnivorous marsupials. Royal Zoological Society of New South Wales, Sydney.Google Scholar
Genise, J. F. 1989. Las cuevas de Actenomys (Rodentia, Octodontidae) de la Formation Chapadmalal (Plioceno superior) de Mar del Plata y Miramar (provincia de Buenos Aires). Ameghiniana 26:3342.Google Scholar
Hirschfeld, S. E. 1976. A new fossil anteater (Edentata, Mammalia) from Colombia, S.A., and evolution of the Vermilingua. Journal of Paleontology 50:419432.Google Scholar
Hirschfeld, S. E., and Webb, S. D. 1968. Plio-Pleistocene megalonychid sloths of North America. Bulletin of the Florida State Museum 12:213296.Google Scholar
Lydekker, R. 1894. Contributions to a knowledge of the fossil vertebrates of Argentina, Part II. The extinct edentates of Argentina. Anales del Museo de La Plata (Paleontología Argentina) 3:1118.Google Scholar
Macalister, A. 1869. On the myology of Bradypus tridactylus; with remarks on the general anatomy of the Edentata. Annual Magazine Natural History 4:5167.Google Scholar
Smith, J. Maynard, and Savage, R. J. G. 1959. The mechanics of mammalian jaws. School Science Review 141:289301.Google Scholar
Mones, A., and Mehl, J. 1990. La presencia de Macroeuphractus aff. moreni (Lydekker, 1895), en la Formación La Paz (Plioceno), Bolivia. Aspectos taxonómicos y bioestratigráficos (Mammalia: Cingulata: Dasypodidae). Comunicaciones Paleontológicas del Museo de Historia Natural de Montevideo 22:1731.Google Scholar
Montgomery, G. G. 1985. The evolution and ecology of armadillos, sloths, and vermilinguas. Smithsonian Institution Press, Washington, D.C.Google Scholar
Naples, V. L. 1987. Reconstruction of cranial morphology and analysis of function in the Pleistocene ground sloth Nothrotheriops shastense (Mammalia, Megatheriidae). Contributions in Science, Los Angeles County Museum of Natural History 389:121.Google Scholar
Patterson, B., and Pascual, R. 1972. The fossil mammal fauna of South America. Pp. 247309in Keast, A., Erk, F., and Glass, B., eds. Evolution, mammals, and southern continents. State University of New York Press, Albany.Google Scholar
Redford, K. H. 1985. Food habits of Armadillos (Xenarthra: Dasypodidae). Pp. 429437in Montgomery, 1985.Google Scholar
Scillato-Yané, G. J. 1980. Catálogo de los Dasypodidae fósiles (Mammalia, Edentata) de la República Argentina. II Congreso Argentino de Paleontología y Bioestratigrafía y I Congreso Latinoamericano de Paleontología, Actas 3:736.Google Scholar
Scillato-Yané, G. J. 1986. Los Xenarthra fósiles de Argentina (Mammalia, Edentata). Actas del IV Congreso Argentino de Paleontología y Bioestratigrafía 2:151155.Google Scholar
Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History 85:1350.Google Scholar
Smith, K. K., and Redford, K. H. 1990. The anatomy and function of the feeding apparatus in two armadillos (Dasypoda): anatomy is not destiny. Journal of Zoology 222:2747.Google Scholar
Turnbull, W. D. 1970. Mammalian masticatory apparatus. Fieldiana (Geology) 18:149356.Google Scholar
Turnbull, W. D. 1976. Restoration of masticatory musculature of Thylacosmylus. Pp. 169185in Churcher, C. S., ed. Athlon Essays on Palaeontology in Honour of Loris Shano Russel. Royal Ontario Museum Life Sciences Miscellaneous Publication.Google Scholar
Vizcaíno, S. F. 1994. Mecánica masticatoria de Stegotherium tessellatum Ameghino (Mammalia, Xenarthra) del Mioceno temprano de Santa Cruz (Argentina): algunos aspectos paleoecológicos relacionados. Ameghiniana 31:283290.Google Scholar
Vizcaíno, S. F. 1997. Myrmecophagy and skull shape in armadillos using conventional Procrustes methods. Abstracts V International Congress of Vertebrate Morphology, Bristol, England. Journal of Morphology 232:336.Google Scholar
Vizcaíno, S. F., and Bargo, M. S. 1998. The masticatory apparatus of Eutatus (Mammalia, Cingulata) and some allied genera: evolution and paleobiology. Paleobiology 24:371383.Google Scholar
Vizcaíno, S. F., and Fariña, R. A. 1997. Diet and locomotion of the armadillo Peltephilus: a new view. Lethaia 30:7986.Google Scholar
Vizcaíno, S. F., and Fariña, R. A. 1999. Ulnar dimensions and fossoriality in armadillos and other South American mammals. Acta Theriologica 44:309320.Google Scholar
Vizcaíno, S. F., De Iuliis, G., and Bargo, M. S. 1998. Skull shape, masticatory apparatus, and diet of Vassallia and Holmesina (Mammalia: Xenarthra: Pampatheriidae): when anatomy constrains destiny. Journal of Mammalian Evolution 5:291322.Google Scholar
Vucetich, M. G., and Verzi, D. H. 1995. Los roedores caviomorfos. In Alberdi, M. T., Leone, G., and Tonni, E. P., eds. Evolución biológica y climática de la región Pampeana durante los ultimos cinco millones de años. Un ensayo de correlación con el Mediterraneo Occidental. Monografías del Museo Nacional de Ciencias Naturales 12:211225. Madrid.Google Scholar
Webb, S. D. 1985. The interrelationships of tree sloths and ground sloths. Pp. 105112in Montgomery, 1985.Google Scholar
Wetzel, R. M. 1982. Systematics, distribution, ecology and conservation of South American Edentates. Pp. 345375in Mares, M. A. and Genoways, H. M.Mammalian biology in South America. Special Publication Series, Pymatuning Laboratory of Ecology, Vol. 6. University of Pittsburgh, Pittsburgh, Pa.Google Scholar
Wetzel, R. M. 1985. Taxonomy and distribution of armadillos, Dasypodidae. Pp. 2346in Montgomery, 1985.Google Scholar
Winge, H. 1941. Edentates (Edentata). Pp. 319341in Jensen, A. S., Spärck, R., and Volsoe, H., eds. The interrelationships of the mammalian genera. Reitzels Forlag, Copenhagen.Google Scholar