Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T00:19:38.274Z Has data issue: false hasContentIssue false

Equatorward migration of Globorotalia truncatulinoides ecophenotypes through the Late Pleistocene: Gradual evolution or ocean change?

Published online by Cambridge University Press:  08 April 2016

G. P. Lohmann
Affiliation:
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
Björn A. Malmgren
Affiliation:
University of Stockholm, Box 6801, S-113 86 Stockholm, Sweden

Abstract

The biogeography of differences in average shape of the modern planktonic foraminifer Globorotalia truncatulinoides (d'Orbigny) exhibits systematic relationships to changes in the ocean's surface environment. Comparison of these shape changes, as they exist today in the Southern Hemisphere, with fossil shapes preserved in a Late Pleistocene record from the South Atlantic Ocean, shows that the biogeography of G. truncatulinoides ecophenotypes has changed markedly through time. Beginning at least 700,000 yr ago and continuing up to the present, there has been a gradual but clear migration of certain morphotypes of G. truncatulinoides toward lower latitudes. The history of this migration bears no simple relationship to the cyclic climatic changes that characterize the Late Pleistocene. We conclude that either (1) phenotypic variants of Gr. truncatulinoides reflect some previously unmeasured, gradually changing aspect of Late Pleistocene oceans, or (2) we are witnessing a gradual evolution of the environment preferences of G. truncatulinoides.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

, A. W. H. and Tolderlund, D. 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. Pp. 105149. In: Funnel, B. M. and Riedel, W. R., eds. The Micropaleontology of the Oceans. Cambridge Univ. Press; London.Google Scholar
Belyea, P. R. and Thunell, R. C.In press. Fourier shape analysis and planktonic foraminifera evolution: the Neogloboquadrina-Pulleniatina lineages. J. Paleontol.Google Scholar
Benson, R. H. 1967. Muscle scar patterns of Pleistocene (Kansas) ostracodes. Pp. 211241. In: Teichert, Curt and Yochelson, E. L., eds. Essays in Paleontology and Stratigraphy. Kansas Univ. Press; Lawrence.Google Scholar
Bookstein, F. L. 1978. The Measurement of Biological Shape and Shape Change. Springer-Verlag; Berlin. Pp. 191.CrossRefGoogle Scholar
Bookstein, F. L., Strauss, R. E., Humphries, J. M., Chernoff, B. C., Elder, R. L., and Smith, G. R. 1982. A comment upon the uses of Fourier methods in systematics. Syst. Zool. 31:8592.CrossRefGoogle Scholar
Cifelli, R. 1965. Planktonic foraminifera from the western North Atlantic. Smithsonian Misc. Coll. 148:136.Google Scholar
Fico, C. 1980. Development of Arthur II—a fast microprocessor controlled particle shape analyzer. , .Google Scholar
Golub, G. H. and Reinsch, C. 1970. Singular value decomposition and least squares solutions. Num. Math. 14:403420.CrossRefGoogle Scholar
Healy-Williams, N. and Williams, D. F. 1981. Fourier analysis of test shape of planktonic foraminifera. Nature. 289:485487.Google Scholar
Johnson, D. A., Ledbetter, M. T., and Burckle, L. H. 1977. Vema Channel paleo-oceanography: Pleistocene dissolution cycles and episodic bottom water flow. Mar. Geol. 23:133.CrossRefGoogle Scholar
Kaesler, R. L. and Waters, J. A. 1972. Fourier analysis of the ostracode margin. Geol. Soc. Am. Bull. 83:11691178.Google Scholar
Kennett, J. P. 1968. Globorotalia truncatulinoides as a paleooceanographic index. Science. 159:14611463.CrossRefGoogle ScholarPubMed
Kennett, J. P. 1970. Pleistocene paleoclimates and foraminiferal biostratigraphy in subantarctic deep-sea cores. Deep-Sea Res. 17:125140.Google Scholar
Lohmann, G. P. 1983. Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. Math. Geol. 15:659672.Google Scholar
Scott, G. H. 1975. Variation in Globorotalia miozea (Foraminiferida) from the New Zealand Neogene. N.Z. J. Geol. Geophys. 18:865880.Google Scholar
Scott, G. H. 1980. The value of outline processing in the biometry and systematics of fossils. Paleontology. 23:757768.Google Scholar
Shackleton, N. J. and Opdyke, N. D. 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Res. 3:3955.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. 1969. Biometry. Pp. 146. W. H. Freeman; San Francisco.Google Scholar
Takayanagi, Y., Niitsoma, N., and Sakai, T. 1968. Wall structure of Globorotalia truncatulinoides (d'Orbigny). Sci. Rep. Tohoku Univ. 40:141170.Google Scholar
Thierstein, H. R., Geitzenauer, K. R., Molfino, B., and Shackleton, N. J. 1977. Global synchroneity of late Quaternary coccolith datum levels: validation by oxygen isotopes. Geology. 5:400404.Google Scholar
Younker, J. L. and Ehrlich, R. 1977. Fourier biometrics: harmonic amplitudes as multivariate shape descriptors. Syst. Zool. 26:336342.Google Scholar
Zahn, C. T. and Roskies, R. Z. 1972. Fourier descriptors for plane closed curves. IEEE Trans. on Computers. C-21:269281.CrossRefGoogle Scholar