Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T07:28:59.480Z Has data issue: false hasContentIssue false

Comparative geographic and environmental diversity dynamics of gastropods and bivalves during the Ordovician Radiation

Published online by Cambridge University Press:  08 April 2016

Philip M. Novack-Gottshall
Affiliation:
Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708–0338. E-mail: pn2@duke.edu
Arnold I. Miller
Affiliation:
Department of Geology, Post Office Box 210013, University of Cincinnati, Cincinnati, Ohio 45221–0013. E-mail: arnold.miller@uc.edu

Abstract

Bivalves and gastropods, prominent members of the Modern Evolutionary Fauna, are traditionally noted for sharing remarkably similar global diversity trajectories and environmental distributions throughout the Phanerozoic. By comparing their fossil occurrences at several scales within a finely resolved geographic, environmental, and temporal framework, it is possible to evaluate whether such similarities are caused primarily by intrinsic macroevolutionary factors or extrinsic ecological factors. Using a database of 7779 global gastropod and bivalve genus occurrences, we investigate the geographical and environmental attributes of bivalves and gastropods during the Ordovician Period at scales ranging from global, to a comparison among five paleocontinents, to an intracontinental comparison of four regions within Laurentia. Although both classes shared statistically indistinguishable global diversity trajectories and broadly similar environmental distributions during the Ordovician, their environmental distributions differed in several significant features. Furthermore, the diversity trajectories and environmental distributions of these classes differed significantly among paleocontinents and among regions within Laurentia. Bivalves were consistently most diverse in deeper water, siliciclastic-rich settings in higher-latitude paleocontinents whereas gastropods were consistently most diverse in shallower, carbonate-rich settings in more-equatorial paleocontinents. Notably, these environmental differences were robust to changing physical parameters within paleocontinents, with each class consistently tracking its preferred environmental setting. These results suggest that environmental factors played significant, albeit distinct, roles in the Ordovician diversifications of gastropods and bivalves. However, their similar global diversity trajectories suggest that shared, intrinsic macroevolutionary attributes also may have played an important role in the evolution of these classes during the Ordovician Radiation.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aitken, J. D., and Norford, B. S. 1967. Lower Ordovician Survey Peak and Outran Formations, southern Rocky Mountains of Alberta. Bulletin of Canadian Petroleum Geology 15:150207.Google Scholar
Alroy, J. 2000a. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.Google Scholar
Alroy, J. 2000b. Successive approximations of diversity curves: ten more years in the library. Geology 28:10231026.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Babin, C., Courtessole, R., Melou, M., Pillet, J., Vizcaino, D., and Yochelson, E. L. 1982. Brachiopodes (Articulés) et mollusques (bivalves, rostroconches, monoplacophores, gastéropodes) de l'Ordovicien inférieur (Trémadocien-Arenigien) de la Montagne Noire (France méridionale). Mémoires de la Société d'Études Scientifiques de l'Aude, Carcassonne.Google Scholar
Babin, C. 1993. Rôle des plates-formes gondwaniennes dans les diversifications des mollusques bivalves durant l'Ordovicien. Bulletin de la Société Géologique de France 164:141153.Google Scholar
Babin, C. 1995. The initial Ordovician bivalve mollusc radiations on the western Gondwanan shelves. Pp. 491498in Cooper, et al. 1995.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Barnes, D. A., Harrison, W. B. III, and Shaw, T. H. 1996. Lower-Middle Ordovician lithofacies and interregional correlation, Michigan basin, U.S.A. Pp. 3554in Witzke, et al. 1996.Google Scholar
Bass, N.W., and Northrop, S.A. 1953. Dotsero and Manitou Formations, White River Plateau, Colorado, with special reference to Clinetop Algal Limestone Member of Dotsero Formation. Bulletin of the American Association of Petroleum Geologists 37:889912.Google Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.Google Scholar
Berthelsen, A. 1998. The Tornquist Zone northwest of the Carpathians: an intraplate pseudosuture. Geologiska Föreningens Förhandlingen 120:223230.Google Scholar
Bevins, R. E., Bluck, B. J., Brenchley, P. J., Fortey, R. A., Hughes, C. P., Ingham, J. K., and Rushton, A. W. A. 1992. Ordovician. In Cope, J. C. W., Ingham, J. K., and Rawson, P. F., eds. Atlas of palaeogeography and lithofacies. Geological Society of London Memoir 13:1936.CrossRefGoogle Scholar
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3:540560.Google Scholar
Boucot, A. J. 1975. Evolution and extinction rate controls. Elsevier, Amsterdam.Google Scholar
Boucot, A. J. 1981. Principles of benthic marine paleoecology. Academic Press, New York.Google Scholar
Brenchley, P. J. 1990. End Ordovician. Pp. 181184in Briggs, D. E. G. and Crowther, P. R., eds. Palaeobiology: a synthesis. Blackwell Scientific, London.Google Scholar
Bretsky, P. W. 1968. Evolution of Paleozoic marine invertebrate communities. Science 159:12311233.Google Scholar
Bretsky, P. W. 1969. Central Appalachian Late Ordovician communities. Geological Society of America Bulletin 80:193202.Google Scholar
Bretsky, P. W. 1970a. Upper Ordovician ecology of the central Appalachians. Peabody Museum of Natural History Bulletin 34.Google Scholar
Bretsky, P. W. 1970b. Late Ordovician benthic communities in north-central New York. New York State Museum and Science Service Bulletin 414.Google Scholar
Brett, C. E., Boucot, A. J., and Jones, B. 1993. Absolute depths of Silurian benthic assemblages. Lethaia 26:2540.CrossRefGoogle Scholar
Bureau of Geology and Mineral Resources of Guangdong Province (BGMRGP). 1988. Regional Geology of Guangdong Province. Geological Publishing House, Beijing.Google Scholar
Cocks, L. R. M. 2001. Ordovician and Silurian global geography. Journal of the Geological Society, London 158:197210.Google Scholar
Cocks, L. R. M., and Fortey, R. A. 1988. Lower Palaeozoic facies and faunas around Gondwana. In Audley-Charles, M. G. and Hallam, A., eds. Gondwana and Tethys. Geological Society Special Publication 37:183200. Oxford University Press, New York.Google Scholar
Cocks, L. R. M., and Fortey, R. A. 1990. Biogeography of Ordovician and Silurian faunas. In McKerrow, W. S. and Scotese, C. R., eds. Paleozoic palaeogeography and biogeography. Geological Society of America Memoir 12:97104.CrossRefGoogle Scholar
Cocks, L. R. M., and Fortey, R. A. 1997. A new Hirnantian fauna from Thailand and the biogeography of the latest Ordovician of south-east Asia. Geobios Memoir 20:117126.Google Scholar
Cocks, L. R. M., and Fortey, R. A. 1998. The Lower Palaeozoic margins of Baltica. Geologiska Föreningens Förhandlingen 120:173179.Google Scholar
Coleman, J. M., and Prior, D. B. 1981. Deltaic environments of deposition. In Scholle, P. A. and Spearing, D., eds. Sandstone depositional environments. AAPG Memoir 31:139178. American Association of Petroleum Geologists, Tulsa, Okla.Google Scholar
Connolly, S. R., and Miller, A. I. 2002. Global Ordovician faunal transitions in the marine benthos: ultimate causes. Paleobiology 28:2640.Google Scholar
Cooper, J. D.Droser, M. L., and Finney, S. C., eds. 1995. Ordovician odyssey: short papers for the seventh international symposium on the Ordovician System. Society for Sedimentary Geology (SEPM), Fullerton, Calif.Google Scholar
Cope, J. C. W. 1996. Early Ordovician (Arenig) bivalves from the Llangyod Inlier, South Wales. Palaeontology 39:9791025.Google Scholar
Cope, J. C. W. 1997. The early phylogeny of the class Bivalvia. Palaeontology 40:713746.Google Scholar
Cope, J. C. W. 1999. Middle Ordovician bivalves from mid-Wales and the Welsh Borderland. Palaeontology 42:467499.Google Scholar
Cope, J. C. W. and Babin, C. 1999. Diversification of bivalves in the Ordovician. Geobios 32:175185.Google Scholar
Cope, J. C. W., Ingham, J. K., and Rawson, P. F., eds. 1992. Atlas of palaeogeography and lithofacies. Geological Society of London Memoir 13.Google Scholar
Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F. 1989. Controls on carbonate platform and basin development. SEPM Special Publication 44.Google Scholar
Droser, M. L., and Sheehan, P. M. 1995. Paleoecology of the Ordovician Radiation and the Late Ordovician extinction event. Pp. 64106in Cooper, J., ed. Ordovician of the Great Basin: fieldtrip guidebook and volume for the seventh international symposium on the Ordovician System. Society for Sedimentary Geology (SEPM), Fullerton, Calif.Google Scholar
Erwin, D. H. 1990. Carboniferous-Triassic gastropod diversity patterns and the Permo-Triassic mass extinction. Paleobiology 16:187203.Google Scholar
Feldmann, R. M., ed. 1996. Fossils of Ohio. Ohio Division of Geological Survey Bulletin 70.Google Scholar
Foote, M. 1994. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology 20:424444.CrossRefGoogle Scholar
Foote, M., and Sepkoski, J. J. Jr. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.Google Scholar
Frey, R. C. 1987. The occurrence of Pelecypods in Early Paleozoic epeiric-sea environments, Late Ordovician of the Cincinnati, Ohio area. Palaios 2:323.Google Scholar
Gilinsky, N. L. 1994. Volatility and the Phanerozoic decline of background extinction intensity. Paleobiology 20:445458.Google Scholar
Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods: ships that pass in the night. Paleobiology 6:383396.Google Scholar
Guensberg, T. E., and Sprinkle, J. S. 1992. Rise of echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology 20:407410.Google Scholar
Harland, T. L. 1981. Middle Ordovician reefs of Norway. Lethaia 14:169188.Google Scholar
Harper, J. A., and Rollins, H. B. 2000. The Bellerophont controversy revisited. American Malacological Bulletin 15:147156.Google Scholar
Harrington, H. J. 1938. Sobre las faunas del Ordovícico inferior del norte Argentino. Revista Museo de La Plata, new series 1:109289.Google Scholar
Holland, S. M. 1993. Sequence stratigraphy of a carbonate-clastic ramp: the Cincinnatian Series (Upper Ordovician) in its type area. Geological Society of America Bulletin 105:306322.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 1996. Sequence stratigraphy and long-term lithologic change in the Middle and Upper Ordovician of the eastern United States. Pp. 117130in Witzke, et al. 1996.Google Scholar
Jaanusson, V. 1973. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia 6:1134.Google Scholar
Jablonski, D. 1998. Geographic variation in the molluscan recovery from the End-Cretaceous extinction. Science 279:13271330.Google Scholar
Jablonski, D., and Raup, D. M. 1995. Selectivity of End-Cretaceous marine bivalve extinctions. Science 268:389391.Google Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:11231125.Google Scholar
Jablonski, D., Lidgard, S., and Taylor, P. D. 1997. Comparative ecology of bryozoan radiations: origin of novelties in cyclostomes and cheilostomes. Palaios 12:505523.Google Scholar
James, N. P., Stevens, R. K., Barnes, C. R., and Knight, I. 1989. Evolution of a Lower Paleozoic continental-margin carbonate platform, northern Canadian Appalachians. Pp. 123146in Crevello, et al. 1989.Google Scholar
Kammer, T. W., Brett, C. E., Boardman, D. R., and Mapes, R. H. 1986. Ecologic stability of the dysaerobic biofacies during the late Paleozoic. Lethaia 19:109121.Google Scholar
Keller, M., and Cooper, J. 1995. Paleokarst in the lower Middle Ordovician of southeastern California and adjacent Nevada and its bearing on the Sauk-Tippecanoe boundary problem. Pp. 323327in Cooper, et al. 1995.Google Scholar
McKinney, F. K. 1990. Classifying and analyzing evolutionary trends. Pp. 2858in MacNamara, K. J., ed. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
Merriam, C. W. 1963. Paleozoic rocks of Antelope Valley, Eureka and Nye Counties, Nevada: U.S. Geological Survey Professional Paper 423.Google Scholar
Miller, A. I. 1988. Spatio-temporal transitions in Paleozoic Bivalvia: an analysis of North American fossil assemblages. Historical Biology 1:251273.Google Scholar
Miller, A. I. 1989. Spatio-temporal transitions in Paleozoic Bivalvia: a field comparison of Upper Ordovician and Upper Paleozoic bivalve-dominated fossil assemblages. Historical Biology 2:227260.Google Scholar
Miller, A. I. 1997a. Comparative diversification dynamics among paleocontinents during the Ordovician Radiation. Geobios Memoir 20:397406.Google Scholar
Miller, A. I. 1997b. Dissecting global diversity patterns: examples from the Ordovician Radiation. Annual Review of Ecology and Systematics 28:85104.Google Scholar
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.Google Scholar
Miller, A. I., and Connolly, S. R. 2001. Substrate affinities of higher taxa and the Ordovician Radiation. Paleobiology 27:768778.Google Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.Google Scholar
Miller, A. I., and Mao, S. 1995. Association of orogenic activity with the Ordovician Radiation of marine life. Geology 23:305308.Google Scholar
Miller, A. I., and Mao, S. 1998. Scales of diversification and the Ordovician Radiation. Pp. 288310in McKinney, M. L., ed. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Miller, A. I., and Sepkoski, J. J. Jr. 1988. Modeling bivalve diversification: the effect of interaction on a macroevolutionary system. Paleobiology 14:364369.Google Scholar
Moffat, H., Droser, M. L., and Thiel, D. 2001. Middle Ordovician bivalves of the Basin and Range. Geological Society of America Abstracts with Programs 33:A-73.Google Scholar
Nikitin, I. F., Apollonov, M. K., Tzaj, D. T., Koroljov, V. G., Kim, A. I., Erina, M. V., Larin, N. M., and Golicov, A. N. 1986. The Ordovician System in Kazakhstan and Middle Asia: correlation chart and explanatory notes. International Union of Geological Sciences, Publication 21.Google Scholar
Novack-Gottshall, P. M., and Miller, A. I.In press. Comparative taxonomic richness and abundance of Late Ordovician gastropods and bivalves in mollusc-rich strata of the Cincinnati Arch. Palaios.Google Scholar
Palmqvist, P. 1991. Differences in the fossilization potential of bivalve and gastropod species related to their life sites and trophic resources. Lethaia 24:287288.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 1996. Extinction, invasion, and sequence stratigraphy: patterns of faunal change in the Middle and Upper Ordovician of the eastern United States. Pp. 131142in Witzke, et al. 1996.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 1999. Biofacies replacement in a sequence stratigraphic framework: Middle and Upper Ordovician of the Nashville Dome, Tennessee, USA. Palaios 14:301323.Google Scholar
Percival, I. G. 1995. Ordovician gastropods of New South Wales: ecologic and biogeographic relationships. Pp. 453456in Cooper, et al. 1995.Google Scholar
Podhalanska, T. 1995. Early/Middle Ordovician condensation in the Polish part of the Baltic basin. Pp. 381–284 in Cooper, et al. 1995.Google Scholar
Pojeta, J. Jr. 1971. Review of Ordovician Pelecypods. U.S. Geological Survey Professional Paper 695.Google Scholar
Pojeta, J. Jr. 1979. The Ordovician paleontology of Kentucky and nearby states: introduction. U.S. Geological Survey Professional Paper 1066–A.Google Scholar
Pojeta, J. Jr., and Gilbert-Tomlinson, J. 1977. Australian Ordovician pelecypod molluscs. Bureau of Mineral Resources, Geology and Geophysics, Australia, Bulletin 174.Google Scholar
Poulsen, C. 1937. On the Lower Ordovician faunas of east Greenland. Meddelelser om Grönland 119(3).Google Scholar
Raatz, W. D., and Ludvigson, G. A. 1996. Depositional environments and sequence stratigraphy of Upper Ordovician epicontinental deep water deposits, eastern Iowa and southern Minnesota. Pp. 143160in Witzke, et al. 1996.Google Scholar
Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217218.Google Scholar
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology 14:109125.Google Scholar
Raup, D. M., and Jablonski, D. 1993. Geography of End-Cretaceous marine bivalve extinctions. Science 260:971973.Google Scholar
Read, J. F. 1989. Controls on evolution of Cambrian-Ordovician passive margin, U.S. Appalachians. Pp. 147166in Crevello, et al. 1989.Google Scholar
Rigby, J. K., Nitecki, M. H., Zhongde, Z., Bingli, L., and Yangwen, J. 1995. Lower Ordovician reefs of Hubei, China, and the western United States. Pp. 423426in Cooper, et al. 1995.Google Scholar
Ross, C. A., and Ross, J. R. P. 1995. North American Ordovician depositional sequences and correlations. Pp. 309313in Cooper, et al. 1995.Google Scholar
Ross, R. J., Adler, F. J., Amsden, T. W., Bergstrom, D., Bergstrom, S. M., Carter, C., Churkin, M., Cressman, E. A., Derby, J. R., Dutro, J. T., Ethington, R. L., Finney, S. C., Fisher, D. W., Fisher, J. H., Harris, A. G., Hintze, L. F., Ketner, K. B., Kolata, D. L., Landing, E., Neuman, R. B., Sweet, W. C., Pojeta, J. Jr., Potter, A. W., Rader, E. K., Repetski, J. E., Shaver, R. H., Thompson, T. L., and Webers, G. F. 1982. The Ordovician System in the United States of America: correlation chart and explanatory notes. International Union of Geological Sciences Publication 12.Google Scholar
Ross, R. J. R. Jr., James, N. P., Hintze, L. F., and Poole, F. G. 1989. Architecture and evolution of a Whiterockian (early Middle Ordovician) carbonate platform, Basin Ranges of western U.S.A. Pp. 167186in Crevello, et al. 1989.Google Scholar
Rowley, D. B., and Kidd, W. S. F. 1981. Stratigraphic relationships and detrital composition of the Medial Ordovician flysch of western New England: implications for the tectonic evolution of the Taconic Orogeny. Journal of Geology 89:199218.Google Scholar
Schneider, J. A. 2001. Bivalve systematics during the 20th century. Journal of Paleontology 75:11191127.Google Scholar
Scotese, C. R., and McKerrow, W. S. 1991. Ordovician plate tectonic reconstructions. In Barnes, C. R. and Williams, S. H., eds. Advances in Ordovician geology. Geological Survey of Canada Paper 90–9:271282.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic marine families and mass extinctions. Paleobiology 10:246257.Google Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221234.Google Scholar
Sepkoski, J. J. Jr. 1991. A model of onshore-offshore change in faunal diversity. Paleobiology 17:5877.Google Scholar
Sepkoski, J. J. Jr. 1995. The Ordovician radiations: diversification and extinction shown by global genus level taxonomic data. Pp. 393396in Cooper, et al. 1995.Google Scholar
Sepkoski, J. J. Jr. 1996. Competition in macroevolution: the double wedge revisited. Pp. 211255in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. Pp, 153190in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Sepkoski, J. J. Jr., and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations. Pp. 673717in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.Google Scholar
Sepkoski, J. J. Jr., McKinney, F. K., and Lidgard, S. 2000. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26:718.Google Scholar
Sheehan, P. M. 1979. Swedish Late Ordovician marine benthic assemblages and their bearing on brachiopod zoogeography. Pp. 6173in Gray, J. and Boucot, A. J., eds. Historical biogeography, plate tectonics, and the changing environment. Proceedings of the 37th Annual Biology Colloquium, and Selected Papers. Oregon State University Press, Corvallis, Oregon.Google Scholar
Shergold, J. H., Gorter, J. D., Nicoll, R. S., and Haines, P. W. 1991. Stratigraphy and the Pacoota Sandstone (Cambrian-Ordovician) Amadeus Basin, N.T. Bureau of Mineral Resources, Australia, Bulletin 237.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry: the principles and practice of statistics in biological research, 3d ed.W. H. Freeman, San Francisco.Google Scholar
Speyer, S. E., and Brett, C. E. 1988. Taphofacies models for epeiric sea environments: middle Paleozoic examples. Palaeogeography, Palaeoclimatology, Palaeoecology 63:225262.Google Scholar
Stanley, S. M. 1985. Rates of evolution. Paleobiology 11:1326.Google Scholar
Steele-Petroviç, H. M. 1979. The physiological differences between articulate brachiopods and filter-feeding bivalves as a factor in the evolution of marine level-bottom communities. Palaeontology 22:101134.Google Scholar
Tjernvik, T. E. 1956. On the Early Ordovician of Sweden: stratigraphy and fauna. Bulletin of the Geological Institutions of the University of Uppsala 36:109284.Google Scholar
Tjernvik, T. E. 1958. The Tremadocian Beds at Flagabro in south-eastern Scania (Sweden). Geologiska Föreningens i Stockholm Förhandlingar 80:259276.Google Scholar
Torsvik, T. H. 1998. Palaeozoic palaeogeography: a North Atlantic viewpoint. Geologiska Föreningens Förhandlingen 120:109118.Google Scholar
Torsvik, T. H., Smethurst, M. A., Meert, J. G., Van der Voo, R., McKerrow, W. S., Brasier, M. D., Sturt, B. A., and Walderhung, H. J. 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic: a tale of Baltica and Laurentia. Earth Science Reviews 40:229258.Google Scholar
Traynor, J.-J. 1988. The Arenig in South Wales: sedimentary and volcanic processes during the initiation of a marginal basin. Geological Journal 23:275292.Google Scholar
Valentine, J. W. 1989. How good was the fossil record? Clues from the Californian Pleistocene. Paleobiology 15:8394.Google Scholar
Valentine, J. W., Tiffney, B. H., and Sepkoski, J. J. Jr. 1991. Evolutionary dynamics of plants and animals: a comparative approach. Palaios 6:8188.Google Scholar
Wagner, P. J. 1995a. Diversity patterns among early gastropods: contrasting taxonomic and phylogenetic descriptions. Paleobiology 21:410439.Google Scholar
Wagner, P. J. 1995b. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.Google Scholar
Wagner, P. J. 1996. Patterns of morphologic diversification during the initial radiation of the “Archaeogastropoda.” Pp. 161169in Taylor, J., ed. Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Wagner, P. J. 1999. Phylogenetic relationships of the earliest anisostrophically coiled gastropods. Smithsonian Contributions to Paleobiology No. 88.Google Scholar
Wagner, P. J. 2001. Gastropod phylogenetics: progress, problems, and implications. Journal of Paleontology 75:11281140.2.0.CO;2>CrossRefGoogle Scholar
Wahlman, G. P. 1992. Middle and Upper Ordovician symmetrical univalved molluscs (Monoplacophora and Bellerophontina) of the Cincinnati Arch region. United States Geological Survey Professional Paper 1066–O.Google Scholar
Walcott, C. D. 1884. Paleontology of the Eureka District, Nevada. United States Geological Survey Monograph 8.Google Scholar
Wang, X., and Chen, X. 1999. Palaeobiogeography and palaeoclimatology of Ordovician in China. Diceng Gushengwu Lunwen Ji 27:127.Google Scholar
Wang, X., Xian, L., Ni, S., Zheng, Q., Xu, G., Zhou, T., Lai, C., and Li, Z. 1987. Biostratigraphy of the Yangtze Gorge Area, Part 2. Early Paleozoic Era. Geological Publishing House, Beijing.Google Scholar
Webb, G. W. 1958. Middle Ordovician stratigraphy in eastern Nevada and western Utah. Bulletin of the American Association of Petroleum Geologists 42:23352377.Google Scholar
Webby, B. D. 1998. Steps toward a global standard for Ordovician stratigraphy. Newsletters in Stratigraphy 36:133.Google Scholar
Westrop, S. R., and Adrain, J. M. 1998. Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology 24:116.Google Scholar
Westrop, S. R., Tremblay, J. V., and Landing, E. 1995. Declining importance of trilobites in Ordovician nearshore paleocommunities: dilution or displacement? Palaios 10:7579.Google Scholar
Williams, S. H., Harper, D. A. T., Neuman, R. B., Boyce, W. D., and MacNiocaill, C. 1995. Lower Paleozoic fossils from Newfoundland and their importance in understanding the history of the Iapetus Ocean. In Hibbard, J. P., van Staal, C. R., and Cawood, P. A., eds. Current perspectives in the Appalachian-Caledonian Orogen. Geological Association of Canada Special Paper 41:115126. Geological Association of Canada, St. John's, Newfoundland.Google Scholar
Witzke, B. J., Ludvigson, G. A., and Day, J. E., eds. 1996. Paleozoic sequence stratigraphy: views from the North American Craton. Geological Society of America Special Paper 306.Google Scholar
Yochelson, E. L. 1962. Early Ordovician gastropods from the Oslo region, Norway. Norsk Geologisk Tidsskrift 42:239250.Google Scholar
Yochelson, E. L., and Wise, A. O. Jr. 1972. A life association of shell and operculum in the Early Ordovician gastropod Ceratopea unguis. Journal of Paleontology 46:681684.Google Scholar
Young, T. P. 1985. The stratigraphy of the Upper Orovician of central Portugal. Ph.D. thesis. University of Sheffield, Sheffield, England.Google Scholar