Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T06:19:18.379Z Has data issue: false hasContentIssue false

Climatic forcing of quaternary deep-sea benthic communities in the North Pacific Ocean

Published online by Cambridge University Press:  08 April 2016

Moriaki Yasuhara
Affiliation:
School of Biological Sciences, Swire Institute of Marine Science, and Department of Earth Sciences, University of Hong Kong, Hong Kong SAR, China; Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013-7012; Center for Advanced Marine Core Research, Kochi University, Nankoku, Kochi 783-8502, Japan
Gene Hunt
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013-7012, U.S.A.
Thomas M. Cronin
Affiliation:
U.S. Geological Survey, National Center, Reston, Virginia 20192, U.S.A.
Natsumi Hokanishi
Affiliation:
Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
Hodaka Kawahata
Affiliation:
Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba 277-8564, Japan
Akira Tsujimoto
Affiliation:
Faculty of Education, Shimane University, Matsue, Shimane 690-8504, Japan
Miho Ishitake
Affiliation:
Sumika Chemical Analysis Service, Ltd., Analysis Service Marketing Division, Chiba Group, Sodegaura, Chiba 299-0266, Japan

Abstract

There is growing evidence that changes in deep-sea benthic ecosystems are modulated by climate changes, but most evidence to date comes from the North Atlantic Ocean. Here we analyze new ostracod and published foraminiferal records for the last 250,000 years on Shatsky Rise in the North Pacific Ocean. Using linear models, we evaluate statistically the ability of environmental drivers (temperature, productivity, and seasonality of productivity) to predict changes in faunal diversity, abundance, and composition. These microfossil data show glacial-interglacial shifts in overall abundances and species diversities that are low during glacial intervals and high during interglacials. These patterns replicate those previously documented in the North Atlantic Ocean, suggesting that the climatic forcing of the deep-sea ecosystem is widespread, and possibly global in nature. However, these results also reveal differences with prior studies that probably reflect the isolated nature of Shatsky Rise as a remote oceanic plateau. Ostracod assemblages on Shatsky Rise are highly endemic but of low diversity, consistent with the limited dispersal potential of these animals. Benthic foraminifera, by contrast, have much greater dispersal ability and their assemblages at Shatsky Rise show diversities typical for deep-sea faunas in other regions.

Statistical analyses also reveal ostracod-foraminferal differences in relationships between environmental drivers and biotic change. Rarefied diversity is best explained as a hump-shaped function of surface productivity in ostracods, but as having a weak and positive relationship with temperature in foraminifera. Abundance shows a positive relationship with both productivity and seasonality of productivity in foraminifera, and a hump-shaped relationship with productivity in ostracods. Finally, species composition in ostracods is influenced by both temperature and productivity, but only a temperature effect is evident in foraminifera. Though complex in detail, the global-scale link between deep-sea ecosystems and Quaternary climate changes underscores the importance of the interaction between the physical and biological components of paleoceanographical research for better understanding the history of the biosphere.

Type
Articles
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China. E-mail: moriakiyasuhara@gmail.com or yasuhara@hku.hk

References

Literature Cited

Alvarez Zarikian, C. A., Stepanova, A. Y., and Grützner, J. 2009. Glacial-interglacial variability in deep sea ostracod assemblage composition at IODP Site U1314 in the subpolar North Atlantic. Marine Geology 258:6987.Google Scholar
Alve, E., and Goldstein, S. T. 2003. Propagule transport as a key method of dispersal in benthic foraminifera (Protista). Limnology and Oceanography 48:21632170.Google Scholar
Alve, E., and Goldstein, S. T. 2010. Dispersal, survival and delayed growth of benthic foraminiferal propagules. Journal of Sea Research 63:3651.Google Scholar
Anderson, D. R., Burnham, K. P., and Thompson, W. L. 2000. Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management 64:912923.Google Scholar
Bartoń, K. 2009. MuMIn: Multi-model inference. R package version 0.12.2/r18. http://R-Forge.R-project.org/projects/mumin/.Google Scholar
Berger, W. H., Adelseck, C. G., and Mayer, L. A. 1976. Distribution of carbonate in surface sediments of the Pacific Ocean. Journal of Geophysical Research 81:26172627.Google Scholar
Boomer, I., and Whatley, R. C. 1995. Cenozoic Ostracoda from guyots in the western Pacific: Holes 865B and 866B (Leg 143). Proceedings of the Ocean Drilling Program, Scientific Results 143:7586.Google Scholar
Brandão, S. N., Sauer, J., and Schön, I. 2010. Circumantarctic distribution in Southern Ocean benthos? A genetic test using the genus Macroscapha (Crustacea, Ostracoda) as a model. Molecular Phylogenetics and Evolution 55:10551069.Google Scholar
Brandt, A., Gooday, A. J., Brandão, S. N., Brix, S., Brökeland, W., Cedhagen, T., Choudhury, M., Cornelius, N., Danis, B., De Mesel, I., Diaz, R. J., Gillan, D. C., Ebbe, B., Howe, J. A., Janussen, D., Kaiser, S., Linse, K., Malyutina, M., Pawlowski, J., Raupach, M., and Vanreusel, A. 2007. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307311.Google Scholar
Brown, J. H., and Maurer, B. A. 1989. Macroecology: the division of food and space among species on continents. Science 243:11451150.Google Scholar
Butlin, R., Schön, I., and Martins, K. 1998. Asexual reproduction in nonmarine ostracods. Heredity 81:473480.Google Scholar
Carney, R. S. 2005. Zonation of deep biota on continental margins. Oceanography and Marine Biology: An Annual Review 43:211278.Google Scholar
Chaplin, J. A., Havel, J. E., and Hebert, P. D. N. 1994. Sex and ostracodes. Trends in Ecology and Evolution 9:435439.Google Scholar
Corliss, B. H., Brown, C. W., Sun, X., and Showers, W. J. 2009. Deep-sea benthic diversity linked to seasonality of pelagic productivity. Deep-Sea Research I 56:835841.Google Scholar
Cronin, T. M., and Dwyer, G. S. 2003. Deep sea ostracodes and climatic change. Paleontological Society Papers 9:247263.Google Scholar
Cronin, T. M., and Raymo, M. E. 1997. Orbital forcing of deep-sea benthic species diversity. Nature 385:624627.Google Scholar
Cronin, T. M., Holtz, T. R. Jr., Stein, R., Spielhagen, R., Futterer, D., and Wollenburg, J. 1995. Late Quaternary paleoceanography of the Eurasian Basin, Arctic Ocean. Paleoceanography 10:259281.Google Scholar
Cronin, T. M., Raymo, M. E., and Kyle, K. P. 1996. Pliocene (3.2–2.4 Ma) ostracode faunal cycles and deep ocean circulation, North Atlantic Ocean. Geology 24:695698.Google Scholar
Cronin, T. M., DeMartino, D. M., Dwyer, G. S., and Rodriguez-Lazaro, J. 1999. Deep-sea ostracode species diversity: response to late Quaternary climate change. Marine Micropaleontology 37:231249.Google Scholar
Cronin, T. M., Boomer, I., Dwyer, G. S., and Rodriguez-Lazaro, J. 2002. Ostracoda and paleoceanography. Pp. 99119 in Holmes and Chivas 2002.Google Scholar
Culver, S. J., and Buzas, M. A. 2000. Global latitudinal species diversity gradient in deep-sea benthic foraminifera. Deep-Sea Research I 47:259275.Google Scholar
Danovaro, R., Dell'Anno, A., and Pusceddu, A. 2004. Biodiversity response to climate change in a warm deep sea. Ecology Letters 7:821828.Google Scholar
Diaz, R. J., and Rosenberg, R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926929.Google Scholar
Didié, C., and Bauch, H. A. 2000. Species composition and glacial-interglacial variations in the ostracode fauna of the northeast Atlantic during the past 200,000 years. Marine Micropaleontology 40:105129.Google Scholar
Didié, C., and Bauch, H. A. 2002. Implications of upper Quaternary stable isotope records of marine ostracodes and benthic foraminifers for paleoecological and paleoceanographical reconstructions. Pp. 279299 in Holmes and Chivas 2002.Google Scholar
Didié, C., Bauch, H. A., and Helmke, J. P. 2002. Late Quaternary deep-sea ostracodes in the polar and subpolar North Atlantic: paleoecological and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 184:195212.Google Scholar
Elderfield, H., Greaves, M., Barker, S., Hall, I. R., Tripati, A., Ferretti, P., Crowhurst, S., Booth, L., and Daunt, C. 2010. A record of bottom-water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quaternary Science Reviews 29:160169.Google Scholar
Garcia, H. E., Locarnini, R. A., Boyer, T. P., and Antonov, J. I. 2006. World Ocean Atlas 2005, Vol. 3. Dissolved oxygen, apparent oxygen utilization, and oxygen saturation. U.S. Government Printing Office, Washington, D.C.Google Scholar
Glover, A. G., Gooday, A. J., Bailey, D. M., Billett, D. S. M., Chevaldonne, P., Colaco, A., Copley, J., Cuvelier, D., Desbruyeres, D., Kalogeropoulou, V., Klages, M., Lampadariou, N., Lejeusne, C., Mestre, N. C., Paterson, G. L. J., Perez, T., Ruhl, H., Sarrazin, J., Soltwedel, T., Soto, E. H., Thatje, S., Tselepides, A., Van Gaever, S., and Vanreusel, A. 2010. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. Advances in Marine Biology 58:195.Google Scholar
Goldstein, S. T. 1999. Foraminifera: a biological overview. Pp. 3755 in Sen Gupta, B. K., ed. Modern Foraminifera. Kluwer Academic, Dordrecht.Google Scholar
Gooday, A. J. 1988. A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332:7073.Google Scholar
Gooday, A. J. 1994. The biology of deep-sea foraminifera: a review of some advances and their applications in paleoceanography. Palaios 9:1431.Google Scholar
Gooday, A. J. 2003a. Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics. Advances in Marine Biology 46:190.Google Scholar
Gooday, A. J. 2003b. Benthic foraminifera. Pp. 274286 in Steele, J.et al., eds. Encyclopedia of ocean sciences. Elsevier, Amsterdam.Google Scholar
Gooday, A. J., Levin, L. A., Linke, P., and Heeger, H. 1992. The role of benthic Foraminifera in deep-sea food webs and carbon cycling. Pp. 6391 in Rowe, G. T.and Pariente, V., eds. Deep-sea food chains and the global carbon cycle. Kluwer Academic, Rotterdam.Google Scholar
Hayward, B. W., Neil, H., Carter, R., Grenfell, H. R., and Hayward, J. J. 2002. Factors influencing the distribution patterns of recent deep-sea benthic foraminifera, east of New Zealand, Southwest Pacific Ocean. Marine Micropaleontology 46:139176.Google Scholar
Herguera, J. C. 2000. Last glacial paleoproductivity patterns in the eastern equatorial Pacific: benthic foraminifera records. Marine Micropaleontology 40:259275.Google Scholar
Hessler, R. R., and Sanders, H. L. 1967. Faunal diversity in the deep-sea. Deep-Sea Research 14:6578.Google Scholar
Holland, S. M. 2003. Confidence limits on fossil ranges that account for facies changes. Paleobiology 29:468479.Google Scholar
Holmes, J. A., and Chivas, A. R., eds. 2002. The Ostracoda: applications in Quaternary research. American Geophysical Union, Washington, D.C.Google Scholar
Horne, D. J., Cohen, A., and Martens, K. 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda. Pp. 536 in Holmes and Chivas 2002.Google Scholar
Hunt, G., Cronin, T. M., and Roy, K. 2005. Species-energy relationship in the deep sea: a test using the Quaternary fossil record. Ecology Letters 8:739747.Google Scholar
Ikeya, N., and Kato, M. 2000. The life history and culturing of Xestoleberis hanaii (Crustacea, Ostracoda). Hydrobiologia 419:149159.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W. 2003. Evolutionary macroecology and the fossil record. Pp. 368390 in Blackburn, T. M.and Gaston, K. J., eds. Macroecology: concepts and consequences. Blackwell, Oxford.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102106.Google Scholar
Jellinek, T., and Swanson, K. M. 2003. Report on the taxonomy, biogeography and phylogeny of mostly living benthic Ostracoda (Crustacea) from deep-sea samples (Intermediate Water depths) from the Challenger Plateau (Tasman Sea) and Campbell Plateau (Southern Ocean), New Zealand. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 558:1329.Google Scholar
Kawabe, M., Fujio, S., Yanagimoto, D., and Tanaka, K. 2009. Water masses and currents of deep circulation southwest of the Shatsky Rise in the western North Pacific. Deep-Sea Research I 56:16751687.Google Scholar
Kawagata, S. 2001. Tasman Front shifts and associated paleoceanographic changes during the last 250,000 years: foraminiferal evidence from the Lord Howe Rise. Marine Micropaleontology 41:167191.Google Scholar
Kawahata, H., Ohkushi, K., and Hatakeyama, Y. 1999. Comparative late Pleistocene paleoceanographic changes in the mid latitude boreal and austral western Pacific. Journal of Oceanography 55:747761.Google Scholar
Kitazato, H., Shirayama, Y., Nakatsuka, T., Fujiwara, S., Shimanaga, M., Kato, Y., Okada, Y., Kanda, J., Yamaoka, A., Masuzawa, T., and Suzuki, K. 2000. Seasonal phytodetritus deposition and responses of bathyal benthic foraminiferal populations in Sagami Bay, Japan: preliminary results from “Project Sagami 1996–1999.”. Marine Micropaleontology 40:135149.Google Scholar
Larwood, J., and Whatley, R. C. 1993. Tertiary to Recent evolution of Ostracoda in isolation on seamounts. Pp. 531549 in McKenzie, K. G.and Jones, P. J., eds. Ostracoda in the earth and life sciences. A. A. Balkema, Rotterdam.Google Scholar
Lecroq, B., Gooday, A. J., and Pawlowski, J. 2009. Global genetic homogeneity in the deep-sea foraminiferan Epistominella exigua (Rotaliida: Pseudoparrellidae). Zootaxa 2096:2332.Google Scholar
Levin, L. A. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology 41:145.Google Scholar
Levin, L. A., Etter, R. J., Rex, M. A., Gooday, A. J., Smith, C. R., Pineda, J., Stuart, C. T., Hessler, R. R., and Pawson, D. 2001. Environmental influences on regional deep-sea species diversity. Annual Review of Ecology and Systematics 32:5193.Google Scholar
Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J., Naqvi, W., Neira, C., Rabalais, N. N., and Zhang, J. 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6:20632098.Google Scholar
Lisiecki, L. E., and Raymo, M. E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003 doi:10.1029/2004PA001071.Google Scholar
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., and Garcia, H. E. 2006. World Ocean Atlas 2005, Vol. 1. Temperature. U.S. Government Printing Office, Washington, D.C.Google Scholar
Loubere, P., and Fariduddin, M. 2003. Patterns of export production in the eastern equatorial Pacific over the past 130,000 years. Paleoceanography 18:1028 doi:10.1029/2001PA000658.Google Scholar
Maeda, L., Kawahata, H., and Nohara, M. 2002. Fluctuation of biogenic and abiogenic sedimentation on the Shatsky Rise in the western North Pacific during the late Quaternary. Marine Geology 189:197214.Google Scholar
Martin, P. A., Lea, D. W., Rosenthal, Y., Shackleton, N. J., Sarnthein, M., and Papenfuss, T. 2002. Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca. Earth and Planetary Science Letters 198:193209.Google Scholar
McClain, C. R., and Barry, J. P. 2010. Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 91:964976.Google Scholar
McClain, C. R., Rex, M. A., and Etter, R. J. 2009a. Patterns in deep-sea macroecology. Pp. 65100 in Witman, J. D.and Roy, K., eds. Marine macroecology. University of Chicago Press, Chicago.Google Scholar
McClain, C. R., Lundsten, L., Ream, M., Barry, J., and DeVogelaere, A. 2009b. Endemicity, biogeography, composition, and community structure on a Northeast Pacific seamount. PLoS ONE 4:e4141 doi:10.1371/journal.pone.0004141.Google Scholar
Nees, S., Armand, L., De Deckker, P., Labracherie, M., and Passlow, V. 1999. A diatom and benthic foraminiferal record from the South Tasman Rise (southeastern Indian Ocean): implications for palaeoceanographic changes for the last 200,000 years. Marine Micropaleontology 38:6989.Google Scholar
Ohkushi, K., Thomas, E., and Kawahata, H. 2000. Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr. Marine Micropaleontology 38:119147.Google Scholar
Oksanen, J., Blanchet, G. B., Kindt, R., Legendre, P., O'Hara, B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and W. H. 2010. vegan: community ecology package. R package, Version 1.17-4. http://CRAN.R-project.org/package=vegan.Google Scholar
Paillard, D., Labeyrie, L., and Yiou, P. 1996. Macintosh program performs time-series analysis. EOS, Transactions, American Geophysical Union 77:379.Google Scholar
Pawlowski, J., Fahrni, J., Lecroq, B., Longet, D., Cornelius, N., Excoffier, L., Cedhagen, T., and Gooday, A. J. 2007. Bipolar gene flow in deep-sea benthic foraminifera. Molecular Ecology 16:40894096.Google Scholar
R Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.Google Scholar
Rasmussen, T. L., Thomsen, E., Troelstra, S. R., Kuijpers, A., and Prins, M. A. 2002. Millennial-scale glacial variability versus Holocene stability: changes in planktic and benthic foraminifera faunas and ocean circulation in the North Atlantic during the last 60,000 years. Marine Micropaleontology 47:143176.Google Scholar
Rex, M. A. 1973. Deep-sea species diversity: decreased gastropod diversity at abyssal depths. Science 181:10511053.Google Scholar
Rex, M. A. 1981. Community structure in the deep-sea benthos. Annual Review of Ecology and Systematics 12:331353.Google Scholar
Rex, M. A., and Etter, R. J. 2010. Deep-sea biodiversity: pattern and scale. Harvard University Press, Cambridge.Google Scholar
Rex, M. A., Stuart, C. T., Hessler, R. R., Allen, J. A., Sanders, H. L., and Wilson, G. D. F. 1993. Global-scale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365:636639.Google Scholar
Rex, M. A., Stuart, C. T., and Coyne, G. 2000. Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic. Proceedings of the National Academy of Sciences USA 97:40824085.Google Scholar
Rex, M. A., Crame, J. A., Stuart, C. T., and Clarke, A. 2005. Large-scale biogeographic patterns in marine mollusks: a confluence of history and productivity? Ecology 86:22882297.Google Scholar
Rex, M. A., Etter, R. J., Morris, J. S., Crouse, J., McClain, C. R., Johnson, N. A., Stuart, C. T., Deming, J. W., Thies, R., and Avery, R. 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series 317:18.Google Scholar
Ruhl, H. A., and Smith, K. L. Jr. 2004. Shifts in deep-sea community structure linked to climate and food supply. Science 305:513515.Google Scholar
Ruhl, H. A., Ellena, J. A., and Smith, K. L. Jr. 2008. Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proceedings of the National Academy of Sciences USA 105:1700617011.Google Scholar
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. American Naturalist 102:243282.Google Scholar
Sanders, H. L., and Hessler, R. R. 1969. Ecology of the deep-sea benthos. Science 163:14191424.Google Scholar
Schellenberg, S. A. 2007. Marine ostracods. Pp. 20462062 in Elias, S. A., editor. Encyclopedia of Quaternary science. Elsevier, Amsterdam.Google Scholar
Shimanaga, M., Kitazato, H., and Shirayama, Y. 2000. Seasonal patterns of vertical distribution between meiofaunal groups in relation to phytodetritus deposition in the bathyal Sagami Bay, central Japan. Journal of Oceanography 56:379387.Google Scholar
Smith, C. R., Berelson, W., Demaster, D. J., Dobbs, F. C., Hammond, D., Hoover, D. J., Pope, R. H., and Stephens, M. 1997. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux. Deep-Sea Research II 44:22952317.Google Scholar
Smith, K. L. Jr, Ruhl, H. A., Bett, B. J., Billett, D. S. M., Lampitt, R. S., and Kaufmann, R. S. 2009. Climate, carbon cycling, and deep-ocean ecosystems. Proceedings of the National Academy of Sciences U.S.A. 106:1921119218.Google Scholar
Sosdian, S., and Rosenthal, Y. 2009. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325:306310.Google Scholar
Steineck, P. L., and Thomas, E. 1996. The latest Paleocene crisis in the deep sea: ostracode succession at Maud Rise, Southern Ocean. Geology 24:583586.Google Scholar
Stuart, C. T., Rex, M. A., and Etter, R. J. 2003. Large-scale spatial and temporal patterns of deep-sea benthic species diversity. Pp. 295311 in Tyler, P. A., ed. Ecosystems of the deep oceans. Elsevier, Amsterdam.Google Scholar
Sun, X., Corliss, B. H., Brown, C. W., and Showers, W. J. 2006. The effect of primary productivity and seasonality on the distribution of deep-sea benthic foraminifera in the North Atlantic. Deep-Sea Research I 53:2847.Google Scholar
Thomas, E., and Gooday, A. J. 1996. Cenozoic deep-sea benthic foraminifers: tracers for changes in oceanic productivity? Geology 24:355358.Google Scholar
Thomas, E., Booth, L., Maslin, M., and Shackleton, N. J. 1995. Northeastern Atlantic benthic foraminifera during the last 45,000 years: changes in productivity seen from the bottom up. Paleoceanography 10:545562.Google Scholar
Tittensor, D. P., Rex, M. A., Stuart, C. T., McClain, C. R., and Smith, C. R. 2011. Species-energy relationships in deep-sea molluscs. Biology Letters doi:10.1098/rsbl.2010.1174.Google Scholar
Ujiié, H. 2003. A 370-ka paleoceanographic record from the Hess Rise, central North Pacific Ocean, and an indistinct ‘Kuroshio Extension.’. Marine Micropaleontology 49:2147.Google Scholar
Webb, A. E., Leighton, L. R., Schellenberg, S. A., Landau, E. A., and Thomas, E. 2009. Impact of the Paleocene-Eocene thermal maximum on deep-ocean microbenthic community structure: using rank-abundance curves to quantify paleoecological response. Geology 37:783786.Google Scholar
Whatley, R. C., and Ayress, M. A. 1988. Pandemic and endemic distribution patterns in Quaternary deep-sea Ostracoda. Pp. 739755 in Hanai, T.et al., eds. Evolutionary biology of Ostracoda: its fundamentals and applications. Kodansha, Tokyo.Google Scholar
Whatley, R. C., and Boomer, I. 1995. Upper Oligocene to Pleistocene Ostracoda from guyots in the western Pacific: Holes 871A, 872C, and 873B. Proceedings of the Ocean Drilling Program, Scientific Results 144:8796.Google Scholar
Wollenburg, J. E., and Kuhnt, W. 2000. The response of benthic foraminifers to carbon flux and primary production in the Arctic Ocean. Marine Micropaleontology 40:189231.Google Scholar
Wollenburg, J. E., Mackensen, A., and Kuhnt, W. 2007. Benthic foraminiferal biodiversity response to a changing Arctic palaeoclimate in the last 24.000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 255:195222.Google Scholar
Yamane, M. 2003. Late Quaternary variations in water mass in the Shatsky Rise area, northwest Pacific Ocean. Marine Micropaleontology 48:205223.Google Scholar
Yasuhara, M., and Cronin, T. M. 2008. Climatic influences on deep-sea ostracode (Crustacea) diversity for the last three million years. Ecology 89:S52S65.Google Scholar
Yasuhara, M., Cronin, T. M., and Martínez Arbizu, P. 2008a. Abyssal ostracods from the South and Equatorial Atlantic Ocean: Biological and paleoceanographic implications. Deep-Sea Research I 55:490497.Google Scholar
Yasuhara, M., Cronin, T. M., deMenocal, P. B., Okahashi, H., and Linsley, B. K. 2008b. Abrupt climate change and collapse of deep-sea ecosystems. Proceedings of the National Academy of Sciences U.S.A. 105:15561560.Google Scholar
Yasuhara, M., Okahashi, H., and Cronin, T. M. 2009a. Taxonomy of Quaternary deep-sea ostracods from the western North Atlantic Ocean. Paleontology 52:879931.Google Scholar
Yasuhara, M., Hunt, G., Cronin, T. M., and Okahashi, H. 2009b. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences U.S.A. 106:2171721720.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar