Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T06:44:57.101Z Has data issue: false hasContentIssue false

Body size, longevity, and growth rate in Lake Pannon melanopsid gastropods and their predecessors

Published online by Cambridge University Press:  08 February 2016

Dana H. Geary
Affiliation:
Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706, United States of America. E-mail: dana@geology.wisc.edu
Erik Hoffmann
Affiliation:
Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706, United States of America. E-mail: dana@geology.wisc.edu
Imre Magyar
Affiliation:
Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706, United States of America. E-mail: dana@geology.wisc.edu
James Freiheit
Affiliation:
Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706, United States of America. E-mail: dana@geology.wisc.edu
Dianna Padilla
Affiliation:
Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706, United States of America. E-mail: dana@geology.wisc.edu

Abstract

We investigate potential microevolutionary mechanisms of phenotypic change in a lineage of brackish-water gastropods from Lake Pannon. The lineage exhibits a threefold increase in body size and a pronounced increase in shell shouldering over a roughly 2.5-Myr interval. We use the stable oxygen isotope profiles of 13 shells to address the question of whether large size is due to more rapid growth or to greater longevity.

Results indicate that larger individuals have significantly greater longevity. Growth rates in large snails are comparable to those of their smaller-bodied ancestors.

Potentially relevant selective advantages of large size include escape from predators, avoidance of resource competition, and increased fecundity. We argue that the first two advantages may have accrued to larger individuals but are not likely to have driven the trend because selection for them would favor more rapid growth rates. Fecundity selection, on the other hand, is readily envisioned in a stable, predictable environment in which the need for early reproduction is relaxed. The evolution of large body size in Lake Pannon molluscs may be comparable to evolution on many islands, where reduced pressure from competition and predation lead to characteristic changes in body size.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, C. R., Garmestani, A. S., Havlicek, T. D., Marquet, P. A., Peterson, G. D., Restrepo, C., Stow, C. A., and Weeks, B. E. 2006. Patterns in body mass distributions: sifting among alternative hypotheses. Ecology Letters 9:630643.CrossRefGoogle ScholarPubMed
Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.CrossRefGoogle ScholarPubMed
Alroy, J. 2000. Understanding the dynamics of trends within evolving lineages. Paleobiology 26:319329.2.0.CO;2>CrossRefGoogle Scholar
Arnold, A. J., Kelly, D. C., and Parker, W. C. 1995. Causality and Cope's Rule: evidence from the planktonic foraminifera. Journal of Paleontology 69:203210.CrossRefGoogle Scholar
Bandel, K. 2006. Families of the Cerithioidea and related superfamilies (Palaeo-Caenogastropoda: Mollusca) from the Triassic to the Recent characterized by protoconch morphology – including the description of new taxa. Freiberger Forschungshefte C511:59138.Google Scholar
Bandel, K., and Reidel, F. 1994. The Late Cretaceous gastropod fauna from Ajka (Bakony Mountains, Hungary): a revision. Annals Naturhistoriches Museum Wien 96A:165.Google Scholar
Bemis, B. E., and Geary, D. H. 1996. The usefulness of bivalve stable isotope profiles as environmental indicators: data from the eastern Pacific Ocean and the southern Caribbean Sea. Palaios 11:328339.CrossRefGoogle Scholar
Benton, M. J. 2002. Cope's rule. Pp. 209210inPagel, M., ed. Encyclopedia of evolution. Oxford University Press, Oxford.Google Scholar
Blanckenhorn, W. U. 2000. The evolution of body size: what keeps organisms small? Quarterly Review of Biology 75:385407.CrossRefGoogle ScholarPubMed
Bonner, J. T. 1988. The evolution of complexity. Princeton University Press, Princeton, N.J.Google Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Brown, J. H., and Maurer, B. A. 1986. Body size, ecological dominance and Cope's rule. Nature 324:248250.CrossRefGoogle Scholar
Brown, J. H., and Nicoletto, P. F. 1991. Spatial scaling of species composition: body masses of North American land mammals. American Naturalist 138:14781512.CrossRefGoogle Scholar
Brown, J. H., Marquet, P. A., and Taper, M. L. 1993. Evolution of body size: consequences of an energetic definition of fitness. American Naturalist 142:573584.CrossRefGoogle ScholarPubMed
Buckley, D. E. 1986. Bioenergetics of age-related versus size-related reproductive tactics in female Viviparus georgianus. Biological Journal of the Linnean Society 27:293309.CrossRefGoogle Scholar
Buick, D. P., and Ivany, L. C. 2004. 100 years in the dark: extreme longevity of Eocene bivalves from Antarctica. Geology 32:921924.CrossRefGoogle Scholar
Clauset, A., and Erwin, D. H. 2008. The evolution and distribution of species body size. Science 321:399401.CrossRefGoogle ScholarPubMed
Cope, E. D. 1896. The primary factors of organic evolution. Open Court Publishing, Chicago.CrossRefGoogle Scholar
Damuth, J. 1993. Cope's rule, the island rule and the scaling of mammalian population density. Nature 365:748750.CrossRefGoogle ScholarPubMed
Dettman, D. L., Reische, A. K., and Lohmann, K. C. 1999. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochimica et Cosmochimica Acta 63:10491057.CrossRefGoogle Scholar
Dillen, L., Jordaens, K., de Bruyn, L., and Backeljau, T. 2010. Fecundity in the hermaphroditic land snail Succinea putris (Pulmonata: Succineidae): does body size matter? Journal of Molluscan Studies 76:376383.CrossRefGoogle Scholar
Falniowski, A., Heller, J., Szarowska, M., and Mazan-Mamczarz, K. 2002. Allozymic taxonomy within the genus Melanopsis (Gastropoda: Cerithiaca) in Israel: a case in which slight differences are congruent. Malacologia 44:307324.Google Scholar
Fenchel, T., and Kofoed, L. H. 1976. Evidence for exploitative interspecific competition in mud snails (Hydrobiidae). Oikos 27:367376.CrossRefGoogle Scholar
Fenchel, T., Kofoed, L. H., and Lappalainen, A. 1975. Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae. Marine Biology 30:119128.CrossRefGoogle Scholar
Gaston, K. J., and Blackburn, T. M. 2000. Pattern and process in macroecology. Blackwell Science, Oxford.CrossRefGoogle Scholar
Geary, D. H. 1990. Patterns of evolutionary tempo and mode in the radiation of melanopsid gastropods. Paleobiology 16:492511.CrossRefGoogle Scholar
Geary, D. H. 1992. An unusual pattern of divergence between fossil melanopsid gastropods: hybridization, dimorphism, or ecophenotypy? Paleobiology 18:97113.CrossRefGoogle Scholar
Geary, D. H., Brieske, T. A., and Bemis, B. E. 1992. The influence and interaction of temperature, salinity, and upwelling on the stable isotopic profiles of strombid gastropod shells. Palaios 7:7785.CrossRefGoogle Scholar
Geary, D. H., Magyar, I., and Müller, P. 2000. Ancient Lake Pannon and its Endemic Molluscan Fauna (Central Europe; Mio-Pliocene). InRossiter, A. and Kawanabe, H., eds. Biology of ancient lakes. Advances in Ecological Research 31:463482.CrossRefGoogle Scholar
Geary, D. H., Staley, A. W., Müller, P., and Magyar, I. 2002. Iterative changes in Lake Pannon Melanopsis reflect a recurrent theme in gastropod morphological evolution. Paleobiology 28:208221.2.0.CO;2>CrossRefGoogle Scholar
Geary, D. H., Hunt, G., Magyar, I., and Schreiber, H. 2010. The paradox of gradualism: phyletic evolution in two lineages of lymnocardiid bivalves (Lake Pannon, central Europe). Paleobiology 36:592614.CrossRefGoogle Scholar
Goodwin, D. H., Flessa, K. W., Schöne, B. R., and Dettman, D. L. 2001. Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California bivalve mollusk Chione (Chionista) cortezi: implications for paleoenvironmental analysis. Palaios 16:415426.2.0.CO;2>CrossRefGoogle Scholar
Goodwin, D. H., Schöne, B. R., and Dettman, D. L. 2003. Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. Palaios 18:110125.2.0.CO;2>CrossRefGoogle Scholar
Goodwin, D. H., Paul, P., and Wissink, C. L. 2009. MoGroFunGen: a numerical model for reconstructing intra-annual growth rates of bivalve molluscs. Palaeogeography, Palaeoclimatology, Palaeoecology 276:4755.CrossRefGoogle Scholar
Goewert, A. E., and Surge, D. 2008. Seasonality and growth patterns using isotope sclerochronology in shells of the Pliocene scallop Chesapecten madisonius. Geo-Marine Letters 28:327338, doi 10.1007/s00367-008-0113-7.CrossRefGoogle Scholar
Gould, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology 62:319329.CrossRefGoogle Scholar
Gould, S. J. 1997. Cope's rule as psychological artifact. Nature 385:199200.CrossRefGoogle Scholar
Gould, S. J., and Jones, D. S. 1999. Direct measurement of age in fossil Gryphaea: the solution to a classic problem in heterochrony. Paleobiology 25:158187.Google Scholar
Hallmann, N., Schöne, B. R., Strom, A., and Fiebig, J. 2008. An intractable climate archive: sclerochronological and shell oxygen isotope analyses of the Pacific geoduck, Panopea abrupta (bivalve mollusk) from Protection Island (Washington State, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 269:115126.CrossRefGoogle Scholar
Harrington, R. J. 1989. Comment—Aspects of growth deceleration in bivalves: clues to understanding the seasonal δ18O and δ13C record. Palaeogeography, Palaeoclimatology, Palaeoecology 70:399407.CrossRefGoogle Scholar
Harzhauser, M., and Piller, W. E. 2007. Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 253:831.CrossRefGoogle Scholar
Harzhauser, M., Kowalke, T. H., and Mandic, O. 2002. Late Miocene (Pannonian) gastropods of Lake Pannon with special emphasis on early ontogenetic development. Annalen des Naturhistorischen Museums Wien 103A:75141.Google Scholar
Harzhauser, M., Daxner-Höck, G., and Piller, W. E. 2004. An integrated stratigraphy of the Pannonian (Late Miocene) in the Vienna Basin. Austrian Journal of Earth Sciences 95/96:619.Google Scholar
Harzhauser, M., Latal, C., and Piller, W. E. 2007. The stable isotope archive of Lake Pannon as a mirror of Late Miocene climate change. Palaeogeography, Palaeoclimatology, Palaeoecology 249:335350.CrossRefGoogle Scholar
Haveles, A. W., and Ivany, L. C. 2010. Rapid growth explains large size of mollusks in the Eocene Gosport Sand, United States Gulf Coast. Palaios 25:550564.CrossRefGoogle Scholar
Heller, J., Sivan, N., and Motro, U. 1999. Systematics, distribution and hybridization of Melanopsis from the Jordan Valley (Gastropoda: Prosobranchia). Journal of Conchology 36:4981.Google Scholar
Heller, J., Sivan, N., and Ben-Ami, F. 2002. Systematics of Melanopsis from the Coastal Plain of Israel (Gastropoda: Cerithioidea). Journal of Conchology 37:589606.Google Scholar
Heller, J., Mordan, P., Ben-Ami, F., and Sivan, N. 2005. Conchometrics, systematics and distribution of Melanopsis (Mollusca: Gastropoda) in the Levant. Zoological Journal of the Linnean Society 144:229260.CrossRefGoogle Scholar
Henry, K. M., and Nixon, S. W. 2008. A half century assessment of hard clam, Mercenaria mercenaria, growth in Narragansett Bay, Rhode Island. Estuaries and Coasts 31:755766.CrossRefGoogle Scholar
Honek, A. 1993. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66:483492.CrossRefGoogle Scholar
Hutchinson, G. E., and MacArthur, R. H. 1959. A theoretical ecological model of size distributions among species of animals. American Naturalist 93:117125.CrossRefGoogle Scholar
Ivany, L. C., Wilkinson, B. H., and Jones, D. S. 2003. Using stable isotopic data to resolve rate and duration of growth throughout ontogeny: an example from the surf clam, Spisula solidissima. Palaios 18:126137.2.0.CO;2>CrossRefGoogle Scholar
Ivany, L. C., Lohmann, K. C., Johnson, E. R., McElroy, B. J., and Cohen, G. J. 2004. Intra-annual isotopic variation in Venericardia bivalves: implications for early Eocene temperature, seasonality, and salinity on the U.S. Gulf Coast. Journal of Sedimentary Research 74:719.CrossRefGoogle Scholar
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289inJablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Jablonski, D. 1997. Body-size evolution in Cretaceous molluscs and the status of Cope's rule. Nature 385:250252.CrossRefGoogle Scholar
Jablonski, D. 2009. Paleontology in the twenty-first century. Pp. 471517inSepkoski, D. and Ruse, M., eds. The paleobiological revolution: essays on the growth of modern paleontology. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Jablonski, D., and Lutz, R. A. 1983. Larval ecology of marine benthic invertebrates: paleobiological implications. Biological Reviews 58:2189.CrossRefGoogle Scholar
Jakubik, B. 2007. Egg number female body weight relationship in freshwater snail Viviparus viviparus L. population in a reservoir. Polish Journal of Ecology 55:325336.Google Scholar
Jakubik, B. 2011. Reproduction as a variable life history trait in freshwater snail Viviparus viviparus (Linnaeus, 1758) (Gastropoda: Architaenioglossa: Viviparidae). Ekólgia 30:7990.Google Scholar
Jekelius, E. 1944. Sarmat und Pont von Soceni (Banat). Memoriile Institutului geologic al Romaniei 5:1167.Google Scholar
Jones, D. S. 1988. Sclerochronology and the size versus age problem. Pp. 93108inMcKinney, M. L., ed. Heterochrony in evolution. Plenum, New York.CrossRefGoogle Scholar
Jones, D. S., and Quitmyer, I. R. 1996. Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11:340346.CrossRefGoogle Scholar
Jones, D. S., Thompson, I., and Ambrose, W. G. 1978. Age and growth rate determinations for the Atlantic surf clam Spisula solidissima based on internal growth lines in shell cross-sections. Marine Biology 47:6370.CrossRefGoogle Scholar
Jones, D. S., Williams, D. F., and Arthur, M. A. 1983. Growth history and ecology of the Atlantic surf clam, Spisula solidissima (Dillwyn), as revealed by stable isotopes and annual shell increments. Journal of Experimental Marine Biology and Ecology 73:225242.CrossRefGoogle Scholar
Jones, D. S., Williams, D. F., and Romanek, C. S. 1986. Life history of symbiont-bearing giant clams from stable isotope profiles. Science 231:4648.CrossRefGoogle ScholarPubMed
Kaandorp, R. J. G., Vonhof, H. B., Del Busto, C., Wesselingh, F. P., Ganssen, G. M., Marmol, A. E., Romero Pittman, L., and van Hinte, J. E. 2003. Seasonal stable isotope variations of the modern Amazonian freshwater bivalve Anodontites trapesialis. Palaeogeography, Palaeoclimatology, Palaeoecology 194:339354.CrossRefGoogle Scholar
Kingsolver, J. G., and Pfennig, D. W. 2004. Individual-level selection as a cause of Cope's rule of phyletic size increase. Evolution 58:16081612.Google ScholarPubMed
Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hill, C. H., Hoang, A., Gibert, P., and Beerli, P. 2001. The strength of phenotypic selection in natural populations. American Naturalist 157:245261.CrossRefGoogle ScholarPubMed
Klaus, S., and Gross, M. 2009. Synopsis of the fossil freshwater crabs of Europe (Brachyura: Potamoidea: Potamidae). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 256:3959. doi: 10.1127/0077–7749/2009/0032.CrossRefGoogle Scholar
Kozlowski, J., and Gawelczyk, A. T. 2002. Why are species' body size distributions usually skewed to the right? Functional Ecology 16:419432.CrossRefGoogle Scholar
Krantz, D. E., Williams, D. F., and Jones, D. S. 1987. Ecological and paleoenvironmental information using stable isotope profiles from living and fossil mollusks. Palaeogeography, Palaeoclimatology, Palaeoecology 58:249266.CrossRefGoogle Scholar
Krantz, D. E., Williams, D. F., and Jones, D. S. 1989. Reply to “Aspects of growth deceleration in bivalves—clues to understanding the seasonal δ18O and δ13C record”—a discussion by R. J. Harrington. Palaeogeography, Palaeoclimatology, Palaeoecology 70:404407.CrossRefGoogle Scholar
LaBarbera, M. 1986. The evolution and ecology of body size. Pp. 6998inRaup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics 20:97117.CrossRefGoogle Scholar
Lomolino, M. V. 1985. Body size of mammals on islands: the island rule reexamined. American Naturalist 125:310316.CrossRefGoogle Scholar
MacFadden, B. J. 1986. Fossil horses from “Eohippus” (Hyracotherium) to Equus: scaling, Cope's Law, and the evolution of body size. Paleobiology 12:355369.CrossRefGoogle Scholar
Magyar, I., Geary, D. H., Müller, P. 1999a. Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography, Palaeoecology, Palaeoclimatology 147:151167.CrossRefGoogle Scholar
Magyar, I., Geary, D. H., Sütõ-Szentai, M., Lantos, M., Müller, P. 1999b. Integrated biostratigraphic, magnetostratigraphic and chronostratigraphic correlations of the Late Miocene Lake Pannon deposits. Acta Geologica Hungarica 42:532.Google Scholar
Magyar, I., Lantos, M., Ujszászi, K., and Kordos, L. 2007. Magnetostratigraphic, seismic and biostratigraphic correlations of the Upper Miocene sediments in the northwestern Pannonian Basin System. Geologica Carpathica 58:277290.Google Scholar
Mandic, O., and Steininger, F. F. 2003. Computer-based mollusk stratigraphy: a case study from the Eggenburgian (Lower Miocene) type region (NE Austria). Palaeogeography, Palaeoclimatology, Palaeoecology 197:263291.CrossRefGoogle Scholar
Mangel, M., Kindsvater, H. K., and Bonsall, M. B. 2007. Evolutionary analysis of life span, competition, and adaptive radiation, motivated by the Pacific rockfishes (Sebastes). Evolution 61:12081224.CrossRefGoogle ScholarPubMed
Mannino, M. A., Thomas, K. D., Leng, M. J., and Sloane, H. J. 2008. Shell growth and oxygen isotopes in the topshell Osilinus turbinatus: resolving past inshore sea surface temperatures. Geo-Marine Letters 28:309325.CrossRefGoogle Scholar
Maurer, B. A. 1999. Untangling ecological complexity. University of Chicago Press, Chicago.Google Scholar
Maurer, B. A., Brown, J. H., and Rusler, R. D. 1992. The micro and macro in body size evolution. Evolution 46:939953.CrossRefGoogle ScholarPubMed
McKinney, M. L. 1990. Trends in body-size evolution. Pp. 75118inMcNamara, K. J., ed. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.CrossRefGoogle ScholarPubMed
McShea, D. W. 1998. Possible largest-scale trends in organismal evolution: eight “live hypotheses.” Annual Review of Ecology and Systematics 29:293318.CrossRefGoogle Scholar
Miller, A. I., and Foote, M. 2009. Epicontinental seas versus open-ocean settings: the kinetics of mass extinction and origination. Science 326:11061109.CrossRefGoogle ScholarPubMed
Miyaji, T., Tanabe, K., and Schöne, B. R. 2007. Environmental controls on daily shell growth of Phacosoma japonicum (Bivalvia: Veneridae) from Japan. Marine Ecology Progress Series 336:141150.CrossRefGoogle Scholar
Müller, P., Geary, D. H., Magyar, I. 1999. The endemic molluscs of the Late Miocene Lake Pannon: their origin, evolution, and family-level taxonomic review. Lethaia 32:4760.CrossRefGoogle Scholar
Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103124.CrossRefGoogle ScholarPubMed
Nevesskaja, L. A., Paramonova, N. P., and Popov, S. V. 2001. History of Lymnocardiinae (Bivalvia, Cardiidae). Paleontological Journal 35 (Suppl. 3):147217.Google Scholar
Nicorici, E., and Karacsonyi, C. 1981. Fauna panoniana de la Nadisu Hododului (Bazinul Simleu) si semnificatia sa stratigrafica. Memoriile Sectiilor Stiintifice, seria 4, Vol. 4.Google Scholar
Olsson, M., Shine, R., Wapstra, E., Ujvari, B., and Madsen, T. 2002. Sexual dimorphism in lizard body shape: the roles of sexual selection and fecundity selection. Evolution 56:15381542.Google ScholarPubMed
Orme, C. D. L., Isaac, N. J. B., and Purvis, A. 2002. Are most species small? Not within species-level phylogenies. Proceedings of the Royal Society of London B 269:12791287.Google ScholarPubMed
Pannella, G., and MacClintock, C. 1968. Biological and environmental rhythms reflected in molluscan shell growth. InMacurda, D. B. Jr., ed. Paleobiological aspects of growth and development. Paleontological Society Memoir 42:6481.Google Scholar
Papp, A., Jámbor, Á., and Steininger, F. F., eds. 1985. Chronostratigraphie und Neostratotypen: Miozän der Zentralen Paratethys, Band VII. M6, Pannonien. Akadémi ai Kiadó, Budapest.Google Scholar
Păuca, M. 1935. Le bassin néogène de Beiuş. Anuarul Institutului geologic al Romaniei 17:133223.Google Scholar
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626629.CrossRefGoogle ScholarPubMed
Piller, W. E., Harzhauser, M., and Mandic, O. 2007. Miocene Central Paratethys stratigraphy: current status and future directions. Stratigraphy 4:151168.CrossRefGoogle Scholar
Popov, S. V., Rögl, R., Rozanov, A. Y., Steininger, F. F., Shcherba, I. G., and Kovac, M., eds. 2004. Lithological-paleogeographic maps of Paratethys; 10 maps late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg 250:146. E. Schweizerbart, Stuttgart.Google Scholar
Poulin, R. 1995. Evolutionary influences on body size in free-living and parasitic isopods. Biological Journal of the Linnean Society 54:231244.CrossRefGoogle Scholar
Purton, L. M. A., and Brasier, M. D. 1997. Gastropod carbonate δ18O and δ13C values record strong seasonal productivity and stratification shifts during the late Eocene in England. Geology 25:871874.2.3.CO;2>CrossRefGoogle Scholar
Ribi, G., and Gebhardt, M. 1986. Age specific fecundity and size of offspring in the prosobranch snail, Viviparus ater. Oecologia 71:1824.CrossRefGoogle ScholarPubMed
Romanek, C. S., Jones, D. S., Williams, D. F., Krantz, D. E., and Radtke, R. 1987. Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clam Tridacna maxima. Marine Biology 94:385393.CrossRefGoogle Scholar
Roth, V. L. 1992. Inferences of allometry from fossils: dwarfing of elephants on islands. Oxford Surveys in Evolutionary Biology 8:259288.Google Scholar
Roy, K., Jablonski, D., and Martien, K. K. 2000. Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. Proceedings of the National Academy of Sciences USA 97:1315013155.CrossRefGoogle ScholarPubMed
Sacchi, M., Horváth, F., Magyar, I., and Müller, P. 1997. Problems and progress in establishing a Late Neogene chronostratigraphy for the Central Paratethys. Neogene Newsletter 4:3746.Google Scholar
Sato, S. 1997. Shell microgrowth patterns of bivalves reflecting seasonal change of phytoplankton abundance. Paleontological Research 1:260266.Google Scholar
Savalli, U. M., and Fox, C. W. 1998. Sexual selection and the fitness consequences of male body size in the seed beetle Stator limbatus. Animal Behavior 55:473483.CrossRefGoogle ScholarPubMed
Schöne, B. R., Tanabe, K., Dettman, D. L., and Sato, S. 2003. Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Marine Biology 142:473485.CrossRefGoogle Scholar
Schöne, B. R., Fiebig, J., Pfeifer, M., Gless, R., Hickson, J., Johnson, A. L. A., Dreyer, W., and Oschmann, W. 2005. Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeography, Palaeoclimatology, Palaeoecology 228:130148.CrossRefGoogle Scholar
Schöne, B. R., Rodland, D. L., Wehrmann, A., Heidel, B., Oschmann, W., Zhang, Z., Fiebig, J., and Beck, L. 2007. Combined sclerochronologic and oxygen isotope analysis of gastropod shells (Gibbula cineraria, North Sea): life-history traits and utility as a high-resolution environmental archive for kelp forests. Marine Biology 150:12371252.CrossRefGoogle Scholar
Sepkoski, J. J. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London B 353:315326.CrossRefGoogle ScholarPubMed
Shine, R. 1988. The evolution of large body size in females: a critique of Darwin's fecundity advantage model. American Naturalist 131:124131.CrossRefGoogle Scholar
Shine, R. 1989. Ecological causes for the evolution of sexual size dimorphism: a review of the evidence. Quarterly Review of Biology 64:419461.CrossRefGoogle ScholarPubMed
Smith, A. B. 2007. Marine diversity through the Phanerozoic: problems and prospects. Journal of the Geological Society 164:731745.CrossRefGoogle Scholar
Smolen, M., and Falniowski, A. 2009. Molecular phylogeny and estimated time of divergence in the central European Melanopsidae: Melanopsis, Fagotia, and Holandriana (Mollusca: Gastropoda: Cerithioidea). Folia Malacologica 17:19.CrossRefGoogle Scholar
Stanley, S. M. 1973. An explanation for Cope's rule. Evolution 27:126.CrossRefGoogle ScholarPubMed
Steininger, F. F. 1971. Beschreibung des Holostratotyps und der Faziostratotypen. A. Holostratotypus und Faziostratotypen der Eggenburger Schichtengruppe im Raume von Eggenburg in Niederösterreich (Österreich). Pp. 104167inSteininger, F. and Seneš, J., eds. M1 - Eggenburgien. Die Eggenburger Schichtengruppe und ihr Stratotypus. Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys 2.Google Scholar
Surge, D., and Walker, K. J. 2006. Geochemical variation in microstructural shell layers of the southern quahog (Mercenaria compechiensis): implications for reconstructing seasonality. Palaeogeography, Palaeoclimatology, Palaeoecology 237:182190.CrossRefGoogle Scholar
Vakarcs, G., Hardenbol, J., Abreau, V. S., Vail, P. R., Várnai, P., and Tari, G. 1998. Oligocene–Middle Miocene depositional sequences of the Central Paratethys and their correlation with regional stages. InDeGraciansky, P.-C., Hardenbol, J., Jacquin, T., Vail, P. R., and Farley, M. B., eds. Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM Special Publication 60:209231.Google Scholar
Vasiliev, I., de Leeuw, A., Filipescu, S., Krijgsman, W., Kuiper, K., Stoica, M., and Briceag, A. 2010. The age of the Sarmatian–Pannonian transition in the Transylvanian Basin (Central Paratethys). Palaeogeography, Palaeoclimatology, Palaeoecology 297:5469CrossRefGoogle Scholar
von Rintelen, T., von Rintelen, K., and Glaubrecht, M. 2010. The species flocks of the viviparous freshwater gastropod Tylomelania (Mollusca: Cerithioidea: Pachychilidae) in the ancient lakes of Sulawesi, Indonesia: the role of geography, trophic morphology and color as driving forces in adaptive radiation. Pp. 485512inGlaubrecht, M., ed. Evolution in action. Springer, Berlin.CrossRefGoogle Scholar
Wagner, P. J. 1996. Contrasting the underlying patterns of active trends in morphologic evolution. Evolution 50:9901007.CrossRefGoogle ScholarPubMed
Wessa, P. 2008. Pearson Correlation (v1.0.3) in Free Statistics Software (v1.1.23-r6), Office for Research Development and Education. http://www.wessa.net/rwasp_correlation.wasp/.Google Scholar
Wessa, P. 2009. Spearman Rank Correlation (v1.0.0) in Free Statistics Software (v1.1.23-r6), Office for Research Development and Education. http://www.wessa.net/rwasp_spearman.wasp/.Google Scholar
Whitlatch, R. B., and Obrebski, S. 1980. Feeding selectivity and coexistence in two deposit-feeing gastropods. Marine Biology 58:219225.CrossRefGoogle Scholar
Witbaard, R., Duineveld, G. C. A., and de Wilde, P. A. W. J. 1999. Geographical difference in growth rates of Arctica islandica (Mollusca: Bivalvia) from the North Sea and adjacent waters. Journal of the Marine Biology Association of the United Kingdom 79:907915.CrossRefGoogle Scholar
Wilkinson, B. H., and Ivany, L. C. 2002. Paleoclimatic inference from stable isotopic compositions of accretionary biogenic hardparts: a quantitative approach to the evaluation of incomplete data. Palaeogeography, Palaeoclimatology, Palaeoecology 185:95114.CrossRefGoogle Scholar
Wootton, R. J. 1979. Energy cost of egg production and environmental determinants of fecundity in teleost fishes. Symposia of the Zoological Society, London 44:133159.Google Scholar