Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T03:26:26.552Z Has data issue: false hasContentIssue false

Assessing the completeness of the fossil record: comparison of different methods applied to parareptilian tetrapods (Vertebrata: Sauropsida)

Published online by Cambridge University Press:  12 August 2016

Antoine Verrière
Affiliation:
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany. Email: antoine.verriere@mfn-berlin.de
Neil Brocklehurst
Affiliation:
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany. Email: antoine.verriere@mfn-berlin.de
Jörg Fröbisch
Affiliation:
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany. Email: antoine.verriere@mfn-berlin.de

Abstract

As paleontological studies are generally distorted by gaps and biases in the fossil record, it is important to assess its completeness. Here we address the fossil record of Parareptilia, a Permian–Triassic amniote clade, applying two measures of specimen completeness: the skeletal completeness metric (SCM) and the character completeness metric (CCM). The SCM quantifies how much of the skeletal material of a taxon is preserved, whereas the CCM measures the amount of phylogenetic information available. The latter was implemented using two different approaches. In this study, we compare three completeness metrics. Two CCM implementations show a strong correlation with each other, but only the second implementation of the CCM correlates significantly with the SCM, possibly due to character selection in phylogenetic data sets. There is no correlation between diversity of parareptiles and their completeness, implying that the observed fluctuations in diversity are not driven by the completeness of the fossils. The mean completeness of parareptiles through time is consistently high compared with previously studied tetrapod clades, suggesting that most parareptile taxa are based on reasonably complete specimens. Clade-specific differences reveal no link between body size and completeness. However, the analyses confirm the impact of ecology, with aquatic mesosaurids being better preserved than terrestrial taxa.

Type
Methods in Paleobiology
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2010. The shifting balance of diversity among major marine animal groups. Science 329:11911194.CrossRefGoogle ScholarPubMed
Barrett, P. M., McGowan, A. J., and Page, V.. 2009. Dinosaur diversity and the rock record. Proceedings of the Royal Society of London B 276:26672674.Google ScholarPubMed
Beardmore, S. R., Orr, P. J., Manzocchi, T., Furrer, H., and Johnson, C.. 2012. Death, decay and disarticulation: modelling the skeletal taphonomy of marine reptiles demonstrated using Serpianosaurus (Reptilia; Sauropterygia). Palaeogeography, Palaeoclimatology, Palaeoecology 337–338:113.CrossRefGoogle Scholar
Bell, M., Upchurch, P., Mannion, P. D., and Lloyd, G. T.. 2013. Using the character completeness metric to examine completeness of Mesozoic dinosaurs: a Maastrichtian high and a paleoequatorial low. Journal of Vertebrate Paleontology Program and Abstracts, 84.Google Scholar
Benson, R. B. J., and Upchurch, P.. 2013. Diversity trends in the establishment of terrestrial vertebrate ecosystems: interactions between spatial and temporal sampling biases. Geology 41:4346.CrossRefGoogle Scholar
Benson, R. B. J., Butler, R. J., Lindgren, J., and Smith, A. S.. 2010. Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proceedings of the Royal Society of London B 277:829834.Google ScholarPubMed
Benson, R. B. J., Butler, R. J., Alroy, J., Mannion, P. D., Carrano, M. T., and Lloyd, G. T.. 2016. Near-stasis in the long-term diversification of Mesozoic tetrapods. PLoS Biology 14:e1002359.CrossRefGoogle ScholarPubMed
Benton, M. J., Tverdokhlebov, V. P., and Surkov, M. V.. 2004. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature 432:97100.CrossRefGoogle ScholarPubMed
Benton, M. J., Dunhill, A. M., Lloyd, G. T., and Marx, F. G.. 2011. Assessing the quality of the fossil record: insights from vertebrates. Geological Society of London Special Publication 358:6394.CrossRefGoogle Scholar
Benton, M. J., Ruta, M., Dunhill, A. M., and Sakamoto, M.. 2013. The first half of tetrapod evolution, sampling proxies, and fossil record quality. Palaeogeography, Palaeoclimatology, Palaeoecology 372:1841.Google Scholar
Berman, D. S., Reisz, R. R., Scott, D. M., Henrici, A. C., Sumida, S. S., and Martens, T.. 2000. Early Permian bipedal reptile. Science 290:969972.CrossRefGoogle ScholarPubMed
Bever, G. S., Lyson, T. R., Field, D. J., and Bhullar, B.-A. S.. 2015. Evolutionary origin of the turtle skull. Nature 525:239242.CrossRefGoogle ScholarPubMed
Brocklehurst, N., and Fröbisch, J.. 2014. Current and historical perspectives on the completeness of the fossil record of pelycosaurian-grade synapsids. Palaeogeography, Palaeoclimatology, Palaeoecology 399:114126.CrossRefGoogle Scholar
Brocklehurst, N., Upchurch, P., Mannion, P. D., and O’Connor, J.. 2012. The completeness of the fossil record of Mesozoic birds: implications for early avian evolution. PLoS One 7:e39056.CrossRefGoogle ScholarPubMed
Brocklehurst, N., Kammerer, C. F., and Fröbisch, J.. 2013. The early evolution of synapsids, and the influence of sampling on their fossil record. Paleobiology 39:470490.CrossRefGoogle Scholar
Bulanov, V. V., and Yashina, O. V.. 2005. Elginiid pareiasaurs of Eastern Europe. Paleontological Journal 39:428432.Google Scholar
Cao, Y., Sorenson, M. D., Kumazawa, Y., Mindell, D. P., and Hasegawa, M.. 2000. Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes. Gene 259:139148.CrossRefGoogle ScholarPubMed
Carroll, R. L. 1988. Vertebrate paleontology and evolution. Freeman, New York.Google Scholar
Cisneros, J. C., Rubidge, B. S., Mason, R., and Dube, C.. 2008. Analysis of millerettid parareptile relationships in the light of new material of Broomia perplexa Watson, 1914, from the Permian of South Africa. Journal of Systematic Palaeontology 6:453462.CrossRefGoogle Scholar
Cleary, T. J., Moon, B. C., Dunhill, A. M., and Benton, M. J.. 2015. The fossil record of ichthyosaurs, completeness metrics and sampling biases. Palaeontology 58:521536.CrossRefGoogle Scholar
Dean, C. D., Mannion, P. D., and Butler, R. J.. 2016. Preservational bias controls the fossil record of pterosaurs. Palaeontology 59:225247.CrossRefGoogle ScholarPubMed
deBraga, M., and Rieppel, O.. 1997. Reptile phylogeny and the interrelationships of turtles. Zoological Journal of the Linnean Society 120:281354.CrossRefGoogle Scholar
Dunhill, A. M., Benton, M. J., Twitchett, R. J., and Newell, A. J.. 2012. Completeness of the fossil record and the validity of sampling proxies at outcrop level. Palaeontology 55:11551175.CrossRefGoogle Scholar
Falconnet, J. 2012. First evidence of a bolosaurid parareptile in France (latest Carboniferous–earliest Permian of the Autun basin) and the spatiotemporal distribution of the Bolosauridae. Bulletin de la Société Géologique de France 183:495508.CrossRefGoogle Scholar
Fara, E., and Benton, M. J.. 2000. The fossil record of Cretaceous tetrapods. Palaios 15:161165.Google Scholar
Fountaine, T. M. R., Benton, M. J., Dyke, G. J., and Nudds, R. L.. 2005. The quality of the fossil record of Mesozoic birds. Proceedings of the Royal Society of London B 272:289294.Google ScholarPubMed
Fröbisch, J. 2008. Global taxonomic diversity of anomodonts (Tetrapoda, Therapsida) and the terrestrial rock record across the Permian−Triassic boundary. PLoS One 3:e3733.CrossRefGoogle ScholarPubMed
Fröbisch, J. 2013. Vertebrate diversity across the end-Permian mass extinction—Separating biological and geological signals. Palaeogeography, Palaeoclimatology, Palaeoecology 372:5061.CrossRefGoogle Scholar
Hill, R. 2005: Integration of morphological data sets for phylogenetic analysis of Amniota: the importance of integumentary characters and increased taxonomic sampling. Systematic Biology 54:530547.CrossRefGoogle ScholarPubMed
Ivakhnenko, M. F. 1974. New data of the early Triassic procolophonids of the USSR. Paleontological Journal 8:346351.Google Scholar
Ivakhnenko, M. F., and Kurochkin, E. N.. 2008. Ископаемые позвоночные России и сопредельных стран. Ископаемые рептилии и птицы—часть 1 [Fossil vertebrates of Russia and neighboring countries. Fossil reptiles and birds—Part 1]. GEOS, Moscow.Google Scholar
Keesey, T. M. 2015. PhyloPic. http://phylopic.org, accessed 20 May 2016.Google Scholar
Kendall, M. G. 1938. A new measure of rank correlation. Biometrika 30:8189.CrossRefGoogle Scholar
Laurin, M., and Reisz, R. R.. 1995. A reevaluation of early amniote phylogeny. Zoological Journal of the Linnean Society 113:165223.Google Scholar
Lee, M. S. Y. 1995. Historical burden in systematics and the interrelationships of “Parareptiles.” Biological Reviews 70:459574.CrossRefGoogle Scholar
Lee, M. S. Y. 1997. Pareiasaur phylogeny and the origin of turtles. Zoological Journal of the Linnean Society 120:197280.CrossRefGoogle Scholar
Lin, L. I.-K. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255.CrossRefGoogle ScholarPubMed
Lyson, T. R., Bever, G. S., Bhullar, B.-A. S., Joyce, W. G., and Gauthier, J.. 2010. Transitional fossils and the origin of turtles. Biology Letters 6:830833.CrossRefGoogle ScholarPubMed
MacDougall, M. J., and Reisz, R. R.. 2012. A new parareptile (Parareptilia, Lanthanosuchoidea) from the Early Permian of Oklahoma. Journal of Vertebrate Paleontology 32:10181026.CrossRefGoogle Scholar
MacDougall, M. J., and Reisz, R. R.. 2014. The first record of a nyctiphruretid parareptile from the Early Permian of North America, with a discussion of parareptilian temporal fenestration. Zoological Journal of the Linnean Society 172:616630.Google Scholar
MacDougall, M. J., Modesto, S. P., and Botha-Brink, J.. 2013. The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history. Acta Palaeontologica Polonica 58:737749.Google Scholar
Mann, H. B., and Whitney, D. R.. 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18:5060.CrossRefGoogle Scholar
Mannion, P. D., and Upchurch, P.. 2010. Completeness metrics and the quality of the sauropodomorph fossil record through geological and historical time. Paleobiology 36:283302.CrossRefGoogle Scholar
Mannion, P. D., Upchurch, P., Carrano, M. T., and Barrett, P. M.. 2011. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time. Biological Reviews 86:157181.CrossRefGoogle ScholarPubMed
McKinney, M. L. 1990. Classifying and analysing evolutionary trends. Pp. 2858. in K. J. McNamara, ed. Evolutionary trends. Belhaven, London.Google Scholar
Modesto, S. P., and Damiani, R. J.. 2007. The procolophonoid reptile Sauropareion anoplus from the lowermost Triassic of South Africa. Journal of Vertebrate Paleontology 27:337349.CrossRefGoogle Scholar
Modesto, S. P., and Reisz, R. R.. 2008. New material of Colobomycter pholeter, a small parareptile from the Lower Permian of Oklahoma. Journal of Vertebrate Paleontology 28:677684.CrossRefGoogle Scholar
Modesto, S. P., Scott, D. M., Botha-Brink, J., and Reisz, R. R.. 2010. A new and unusual procolophonid parareptile from the Lower Triassic Katberg Formation of South Africa. Journal of Vertebrate Paleontology 30:715723.CrossRefGoogle Scholar
Modesto, S. P., Scott, D. M., MacDougall, M. J., Sues, H.-D., Evans, D. C., and Reisz, R. R.. 2015. The oldest parareptile and the early diversification of reptiles. Proceedings of the Royal Society of London B 282:2014.1912.Google ScholarPubMed
Müller, J., Li, J.-L., and Reisz, R. R.. 2008. A new bolosaurid parareptile, Belebey chengi sp. nov., from the Middle Permian of China and its paleogeographic significance. Naturwissenschaften 95:11691174.CrossRefGoogle ScholarPubMed
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.CrossRefGoogle ScholarPubMed
R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Reisz, R. R., Müller, J., Tsuji, L. A., and Scott, D. M.. 2007. The cranial osteology of Belebey vegrandis (Parareptilia: Bolosauridae), from the Middle Permian of Russia, and its bearing on reptilian evolution. Zoological Journal of the Linnean Society 151:191214.CrossRefGoogle Scholar
Reisz, R. R., MacDougall, M. J., and Modesto, S. P.. 2014. A new species of the parareptile genus Delorhynchus , based on articulated skeletal remains from Richards Spur, Lower Permian of Oklahoma. Journal of Vertebrate Paleontology 34:10331043.CrossRefGoogle Scholar
Ruta, M., Cisneros, J. C., Liebrecht, T., Tsuji, L. A., and Müller, J.. 2011. Amniotes through major biological crises: faunal turnover among parareptiles and the end-Permian mass extinction. Palaeontology 54:11171137.CrossRefGoogle Scholar
Säilä, L. K. 2008. The osteology and affinities of Anomoiodon liliensterni, a procolophonid reptile from the Lower Triassic Bundsandstein of Germany. Journal of Vertebrate Paleontology 28:11991205.CrossRefGoogle Scholar
Smith, A. B. 2007. Intrinsic versus extrinsic biases in the fossil record: contrasting the fossil record of echinoids in the Triassic and early Jurassic using sampling data, phylogenetic analysis, and molecular clocks. Paleobiology 33:310323.CrossRefGoogle Scholar
Smith, A. B., and McGowan, A. J.. 2007. The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe? Palaeontology 50:765774.CrossRefGoogle Scholar
Smith, A. B., and McGowan, A. J.. 2008. Temporal patterns of barren intervals in the Phanerozoic. Paleobiology 34:155161.CrossRefGoogle Scholar
Spearman, C. 1904. The proof and measurement of association between two things. American Journal of Psychology 15:72.CrossRefGoogle Scholar
Sues, H.-D., and Reisz, R. R.. 2008. Anatomy and phylogenetic relationships of Sclerosaurus armatus (Amniota: Parareptilia) from the Buntsandstein (Triassic) of Europe. Journal of Vertebrate Paleontology 28:10311042.CrossRefGoogle Scholar
Tsuji, L. A. 2013. Anatomy, cranial ontogeny and phylogenetic relationships of the pareiasaur Deltavjatia rossicus from the Late Permian of central Russia. Transactions of the Royal Society of Edinburgh (Earth Sciences) 104:81122.Google Scholar
Tsuji, L. A., and Müller, J.. 2009. Assembling the history of the Parareptilia: phylogeny, diversification, and a new definition of the clade. Fossil Record 12:7181.CrossRefGoogle Scholar
Tsuji, L. A., Müller, J., and Reisz, R. R.. 2012. Anatomy of Emeroleter levis and the phylogeny of the Nycteroleter Parareptiles. Journal of Vertebrate Paleontology 32:4567.CrossRefGoogle Scholar
Tsuji, L. A., Sidor, C. A., Steyer, J.-S., Smith, R. M. H., Tabor, N. J., and Ide, O. 2013. The vertebrate fauna of the Upper Permian of Niger. VII. Cranial anatomy and relationships of Bunostegos akokanensis (Pareiasauria). Journal of Vertebrate Paleontology 33:747763.CrossRefGoogle Scholar
Uhen, M. D., and Sessa, J.. 2013. Paleobiology Database. http://paleobiodb.org, accessed 9 April 2014.Google Scholar
Upchurch, P., Mannion, P. D., Benson, R. B. J., Butler, R. J., and Carrano, M. T.. 2011. Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a case study from the Dinosauria. Geological Society of London Special Publication 358:209240.CrossRefGoogle Scholar
Walther, M., and Fröbisch, J.. 2013. The quality of the fossil record of anomodonts (Synapsida, Therapsida). Comptes Rendus Palevol 12:495504.CrossRefGoogle Scholar
Walther, M., and Fröbisch, J.. 2014. Corrigendum to “The quality of the fossil record of anomodonts (Synapsida, Therapsida).” Comptes Rendus Palevol 13:6164.CrossRefGoogle Scholar
Zardoya, R., and Meyer, A.. 2001. The evolutionary position of turtles revised. Naturwissenschaften 88:193200.CrossRefGoogle ScholarPubMed