Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-d2wc8 Total loading time: 0.172 Render date: 2021-10-17T14:20:18.447Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Why are larger Foraminifera large?

Published online by Cambridge University Press:  08 April 2016

Pamela Hallock*
Affiliation:
Department of Marine Science, University of South Florida, 140 Seventh Avenue South, St. Petersburg, Florida 33701

Abstract

Delayed maturation and growth to large sizes are only advantageous under stable environmental conditions where food resources are limited. Specialization to algal symbiosis is also highly advantageous under those conditions if sunlight is available. The coevolution of these two characteristics has occurred many times in many foraminiferal lineages. These traits are sometimes associated with increased embryon size and suppression of sexual reproduction, which are also characteristics most advantageous under stable environmental conditions. Specialization for these traits, ensuring success in warm, shallow, stable, oligotrophic environments, often dooms the species or lineage to extinction when conditions change.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. G. 1983. Speciation, phylogenesis, tectonism, climate and eustacy: factors in the evolution of Cenozoic larger foraminiferal bioprovinces. Pp. 255289. In: Sims, R. W., Price, J. H., and Whalley, P. E. S., eds. Evolution, Time and Space: The Evolution of the Biosphere. Systematics Assoc. Spec. Vol. 23. Academic Press; New York.Google Scholar
Barker, R. W. and Grimsdale, T. R. 1936. A contribution to the phylogeny of the orbitoidal Foraminifera, with descriptions of new forms from the Eocene of Mexico. J. Paleontol. 18:204209.Google Scholar
, A. W. H. 1982. Biology of planktonic foraminifera. Pp. 5192. In: Broadhead, T. W., ed. Foraminifera, Notes for a Short Course. Stud. Geol. 6. Dept. Geology, Univ. Tenn.; Knoxville.Google Scholar
Bradshaw, J. S. 1957. Laboratory studies of the rate of growth of the foraminifer Streblus beccarii (Linné), var. tepida Cushman. J. Paleontol. 31:11381147.Google Scholar
Brady, H. B. 1884. Report on the Foraminifera dredged by HMS Challenger, during the years 1873–1876. Rept. Scientific Results Explor. Voyage HMS Challenger, Zoology. 9:1814.Google Scholar
Bramlette, M. N. 1965. Massive extinctions in biota at the end of Mesozoic time. Science. 148:16961699.CrossRefGoogle ScholarPubMed
Chaproniere, G. C. H. 1975. Paleoecology of Oligo-Miocene larger Foraminiferida, Australia. Alcheringa. 1:3758.CrossRefGoogle Scholar
Cole, W. S. 1957. Geology of Saipan, Mariana Islands, Part 3. Paleontology, Chapter I. Larger Foraminifera. U.S. Geol. Surv. Prof. Pap. 2801:13211360.Google Scholar
Delaca, T. E., Lipps, J. H., and Hessler, R. R. 1980. The morphology and ecology of a new large agglutinated Antarctic foraminifer (Textulariina: Notodendrodidae nov.) Zool. J. Linnean Soc. 69:205224.CrossRefGoogle Scholar
Fermont, W. J. J. 1977. Biometrical investigation of the genus Operculina in recent sediments of the Gulf of Elat, Red Sea. Utrecht Micropaleontol. Bull. 15:111147.Google Scholar
Fermont, W. J. J. 1982. Discocyclinidae from Ein Avedat (Israel). Utrecht Micropaleontol. Bull. 27:1173.Google Scholar
Fischer, A. G. and Arthur, M. A. 1977. Secular variations in the pelagic realm. Spec. Publ. Soc. Econ. Paleontol. Mineral. 25:1950.Google Scholar
Grell, K. G. 1973. Protozoology. Springer-Verlag; New York. 554 pp.CrossRefGoogle Scholar
Hallock, P. 1979. Trends in test shape with depth in large, symbiont-bearing Foraminifera. J. Foram. Res. 9:6169.CrossRefGoogle Scholar
Hallock, P. 1981a. Light dependence in Amphistegina. J. Foram. Res. 11:4046.CrossRefGoogle Scholar
Hallock, P. 1981b. Algal symbiosis: a mathematical analysis. Mar. Biol. 62:249255.CrossRefGoogle Scholar
Hallock, P. 1982. Evolution and extinction in larger Foraminifera. Proc. 3d N. Am. Paleontol. Conv. 1:221225.Google Scholar
Hallock, P. 1984. Distribution of selected species of living algal symbiont-bearing Foraminifera on two Pacific coral reefs. J. Foram. Res. 14:250261.CrossRefGoogle Scholar
Hallock, P. and Glenn, C. 1985. Numerical analysis of foraminiferal assemblages: a tool for recognizing depositional facies in Lower Miocene reef complexes. J. Paleontol. 59. in press.Google Scholar
Haynes, J. 1965. Symbiosis, wall structure and habitat in Foraminifera. Cushman Found. Foram. Research Contr. 16:4043.Google Scholar
Hemleben, C. and Spindler, M. 1983. Recent advances in research on living planktonic Foraminifera. Utrecht Micropaleontol. Bull. 30:141170.Google Scholar
Herman, Y. 1981. Causes of massive biotic extinctions and explosive evolutionary diversification through Phanerozoic time. Geology. 9:104108.2.0.CO;2>CrossRefGoogle Scholar
Hirshfield, H. I., Charmatz, R., and Helson, L. 1968. Foraminifera in samples taken from Enewetak Atoll in 1956. J. Protozoology. 15:497502.CrossRefGoogle Scholar
Jepps, M. W. 1942. Studies on Polystomella Lamark. J. Mar. Biol. Assoc., U.K. 25:607666.CrossRefGoogle Scholar
Kauffman, E. G. 1979. The ecology and biogeography of the Cretaceous/Tertiary extinction event. Pp. 2937. In: Christensen, W. K. and Birkelund, T., eds. Cretaceous/Tertiary Boundary Events Symposium II. Univ. Copenhagen; Copenhagen.Google Scholar
Keller, G. 1983. Eocene-Oligocene: a time of transition. Am. Assoc. Petrol. Geol. Bull. 67:494.Google Scholar
Keller, G. and Barron, J. A. 1983. Paleoceanographic implications of Miocene deep-sea hiatuses. Geol. Soc. Am. Bull. 94:590613.2.0.CO;2>CrossRefGoogle Scholar
Lee, J. J. 1980. Nutrition and physiology of the Foraminifera. Pp. 4366. In: Biochemistry and Physiology of Protozoa. 2d ed., v. 3. Academic Press; New York.Google Scholar
Lee, J. J., McEnery, M. E., and Kahn, E. G. 1979. Symbiosis and the evolution of larger Foraminifera. Micropaleontology. 25:118140.CrossRefGoogle Scholar
Lee, J. J., McEnery, M. E., Röttger, R., and Reiner, Ch. W. 1980. The isolation, culture and identification of endosymbiotic diatoms from Heterostegina depressa d'Orbigny and Amphistegina lessonii d'Orbigny (Larger Foraminifera) from Hawaii. Bot. Mar. 23:297302.Google Scholar
Leutenegger, S. 1977. Reproductive cycles of larger Foraminifera and depth distributions of generations. Utrecht Micropaleontol. Bull. 15:2634.Google Scholar
Leutenegger, S. 1984. Symbiosis in benthic Foraminifera: specificity and host adaptations. J. Foram. Res. 14:1635.CrossRefGoogle Scholar
Levanon-Spanier, I., Padan, E., and Reiss, Z. 1979. Primary production in a desert-enclosed sea—the Gulf of Elat (Aqaba), Red Sea. Deep Sea Res. 26:673685.CrossRefGoogle Scholar
Loeblich, A. R. Jr., and Tappan, H. 1964. Sarcodina, chiefly “Thecoamoebians” and Foraminiferida. Pp. 1900. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, pt. C. Geol. Soc. Am. and Univ. Kansas Press; Lawrence.Google Scholar
Loeblich, A. R. and Tappan, H. 1982. Classification of the Foraminiferida. Pp. 2236. In: Broadhead, T. W., ed. Foraminifera, Notes for a Short Course. Stud. Geol. 6. Dept. Geology, Univ. Tenn.; Knoxville.Google Scholar
MacArthur, R. H. and Wilson, E. O. 1967. Island Biogeography. Princeton Univ. Press; Princeton, N.J. 203 pp.Google Scholar
Mertz, D. B. 1970. Notes on methods used in life history studies. Pp. 417. In: Connell, J. H., Mertz, D. B., and Murdoch, W. W., eds. Ecology and Ecological Genetics. Harper & Row; New York.Google Scholar
Muller, P. Hallock. 1974. Sediment production and population biology of the benthic foraminifer Amphistegina madagascariensis. Limnol. Oceanogr. 19:802809.CrossRefGoogle Scholar
Muller, P. Hallock. 1977. Some aspects of the ecology of several large, symbiont-bearing Foraminifera and their contribution to warm, shallow-water biofacies. Ph.D. diss., Univ. Hawaii (Univ. Microfilms, DDS No. 77-23491).Google Scholar
Murphy, G. I. 1968. Pattern in life history and the environment. Am. Nat. 102:390404.CrossRefGoogle Scholar
Murray, J. W. 1973. Distribution and ecology of living benthic foraminiferids. Crane, Russak & Co.; New York. 274 pp.Google Scholar
Myers, E. H. 1936. The life cycle of Spirillina vivipara Ehrenberg, with notes on the morphogenesis, systematics, and distribution of the Foraminifera. J. Royal Micro. Soc. Lond. 56:120146.CrossRefGoogle Scholar
Pitman, W. C. III. 1978. Relationship between eustacy and stratigraphic sequences of passive margins. Geol. Soc. Am. Bull. 89:13891403.2.0.CO;2>CrossRefGoogle Scholar
Poole, R. W. 1974. An Introduction to Quantitative Ecology. McGraw-Hill; New York. 532 pp.Google Scholar
Ross, C. A. 1972a. Biology and ecology of Marginopora vertebralis (Foraminiferida), Great Barrier Reef. J. Protozool. 19:181192.CrossRefGoogle Scholar
Ross, C. A. 1972b. Paleobiological analysis of fusulinacean (Foraminiferida) shell morphology. J. Paleontol. 46:719728.Google Scholar
Ross, C. A. 1974. Evolutionary and ecological significance of large, calcareous Foraminiferida (Protozoa), Great Barrier Reef. Proc. 2d Int. Coral Reef Symp. 1:327333.Google Scholar
Ross, C. A. 1982. Paleozoic Foraminifera. Fusulinids. Pp. 163176. In: Broadhead, T. W., ed. Foraminifera, Notes for a Short Course. Stud. Geol. 6. Dept. Geol., Univ. Tenn.; Knoxville.Google Scholar
Röttger, R. 1972a. Die Kultur von Heterostegina depressa (Foraminifera: Nummulitidae). Mar. Biol. 15:150159.CrossRefGoogle Scholar
Röttger, R. 1972b. Die Bedentung der Symbiose von Heterostegina depressa (Foraminifera, Nummulitidae) fur hohe Siedlungsdichteund karbonat produktion. Abh. dt. Zool. Ges. 1971:4247.Google Scholar
Röttger, R. 1972c. Analyse von Wachstumskurven von Heterostegina depressa (Foraminifera: Nummulitidae). Mar. Biol. 17:228242.CrossRefGoogle Scholar
Röttger, R. 1974. Larger Foraminifera: reproduction and early stages of development in Heterostegina depressa. Mar. Biol. 26:512.CrossRefGoogle Scholar
Röttger, R. 1976. Ecologic observations of Heterostegina depressa (Foraminifera: Nummulitidae) in the laboratory and in its natural habitat. Maritime Sed. Spec. Publ. 1:7580.Google Scholar
Röttger, R. and Hallock, P. 1982. Shape trends in Heterostegina depressa (Protozoa, Foraminiferida). J. Foram. Res. 12:197204.CrossRefGoogle Scholar
Röttger, R. and Schmaljohann, R. 1976. Foraminifera: Gamogonie, Teil des Entwicklungsgangs der rezenten Nummulitide Heterostegina depressa. Die Naturwissenschaften. 10:486.CrossRefGoogle Scholar
Schaub, H. 1963. Uber einige Entwicklungsreihen von Nummulites und Assiline und ihre stratigraphische bedeutung. Pp. 282297. In: Von Koenigswald, G. H. R., Emeis, J. D., Buning, W. L., and Wagner, C. W., eds. Evolutionary Trends in Foraminifera. Elsevier; New York.Google Scholar
Stearns, S. C. 1976. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51:347.CrossRefGoogle ScholarPubMed
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H. 1942. The Oceans. Prentice-Hall; Englewood Cliffs, N.J. 1087 pp.Google Scholar
Vail, P. R., Mitchum, R. M. Jr., and Thompson, S. 1977. Seismic stratigraphy and global changes of sea level. Part four. Global cycles of relative changes of sea level. Am. Assoc. Petrol. Geol. Mem. 26:8397.Google Scholar
Van Gorsel, J. T. 1978. Late Cretaceous orbitoidal Foraminifera. Pp. 1120. In: Hedley, R. H. and Adams, C. G., eds. Foraminifera. Vol. 3. Academic Press; New York.Google Scholar
Von Koenigswald, G. H. R., Emeis, J. D., Buning, W. L., and Wagner, C. W., eds. 1963. Evolutionary Trends in Foraminifera. Elsevier; New York. 355 pp.Google Scholar
Williams, G. C. 1975. Sex and Evolution. Princeton Univ. Press; Princeton, N.J.Google ScholarPubMed
Zohary, T., Reiss, Z., and Hottinger, L. 1980. Population dynamics of Amphisorus hemprichii (Foraminifera) in the Gulf of Elat (Aqaba), Red Sea. Eclogae geol. Helv. 73:10711094.Google Scholar
167
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Why are larger Foraminifera large?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Why are larger Foraminifera large?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Why are larger Foraminifera large?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *