Skip to main content Accessibility help
Hostname: page-component-8bbf57454-kwtxg Total loading time: 0.41 Render date: 2022-01-25T06:11:40.381Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

The impact of geographic range, sampling, ecology, and time on extinction risk in the volatile clade Graptoloida

Published online by Cambridge University Press:  20 December 2016

James Boyle
Geology Department, University at Buffalo, Buffalo, New York 14260, U.S.A. E-mail:
H. David Sheets
Physics Department, Canisius College, Buffalo, New York 14260, U.S.A.
Shuang-Ye Wu
Department of Geology, University of Dayton, Dayton, Ohio 45469, U.S.A.
Daniel Goldman
Department of Geology, University of Dayton, Dayton, Ohio 45469, U.S.A.
Michael J. Melchin
Department of Earth Sciences, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
Roger A. Cooper
GNS Science, Lower Hutt, New Zealand
Peter M. Sadler
University of California, Riverside, Riverside, California 92521, U.S.A.
Charles E. Mitchell
Geology Department, University at Buffalo, Buffalo, New York 14260, U.S.A. E-mail:


Although extinction risk has been found to have a consistent negative relationship with geographic range across wide temporal and taxonomic scales, the effect has been difficult to disentangle from factors such as sampling, ecological niche, or clade. In addition, studies of extinction risk have focused on benthic invertebrates with less work on planktic taxa. We employed a global set of 1114 planktic graptolite species from the Ordovician to lower Devonian to analyze the predictive power of species’ traits and abiotic factors on extinction risk, combining general linear models (GLMs), partial least-squares regression (PLSR), and permutation tests. Factors included measures of geographic range, sampling, and graptolite-specific factors such as clade, biofacies affiliation, shallow water tolerance, and age cohorts split at the base of the Katian and Rhuddanian stages.

The percent variance in durations explained varied substantially between taxon subsets from 12% to 45%. Overall commonness, the correlated effects of geographic range and sampling, was the strongest, most consistent factor (12–30% variance explained), with clade and age cohort adding up to 18% and other factors <10%. Surprisingly, geographic range alone contributed little explanatory power (<5%). It is likely that this is a consequence of a nonlinear relationship between geographic range and extinction risk, wherein the largest reductions in extinction risk are gained from moderate expansion of small geographic ranges. Thus, even large differences in range size between graptolite species did not lead to a proportionate difference in extinction risk because of the large average ranges of these species. Finally, we emphasize that the common practice of determining the geographic range of taxa from the union of all occurrences over their duration poses a substantial risk of overestimating the geographic scope of the realized ecological niche and, thus, of further conflating sampling effects on observed duration with the biological effects of range size on extinction risk.

Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aberhan, M., and Baumiller, T. L.. 2003. Selective extinction among Early Jurassic bivalves: a consequence of anoxia. Geology 31:10771080.CrossRefGoogle Scholar
Addo-Bediako, A., Chown, S. L., and Gaston, K. J.. 2000. Thermal tolerance, climatic vulnerability and latitude. Proceedings of the Royal Society of London B 267:739745.CrossRefGoogle Scholar
Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716723.CrossRefGoogle Scholar
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105:1153611542.CrossRefGoogle ScholarPubMed
Anstey, R. L. 1986. Bryozoan provinces and patterns of generic evolution and extinction in the Late Ordovician of North America. Lethaia 19:3351.CrossRefGoogle Scholar
Anstey, R. L., Pachut, J. F., and Tuckey, M. E.. 2003. Patterns of bryozoan endemism through Ordovician–Silurian transition. Paleobiology 29:305328.2.0.CO;2>CrossRefGoogle Scholar
Armstrong, H. A., and Harper, D. A. T.. 2014. An earth system approach to understanding the end-Ordovician (Hirnantian) mass extinction. Geological Society of America Special Paper 505:287300.CrossRefGoogle Scholar
Armstrong, H. A., Baldini, J., Challands, T. J., Gröcke, D. R., and Owen, A. W.. 2009. Response of the inter-tropical convergence zone to southern hemisphere cooling during the Upper Ordovician glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 284:227236.CrossRefGoogle Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C.. 2004. Origination, extinction and mass depletions of marine diversity. Paleobiology 30:522542.2.0.CO;2>CrossRefGoogle Scholar
Bapst, D. W., Bullock, P. C., Melchin, M. J., Sheets, H. D., and Mitchell, C. E.. 2012. Graptolite diversity and disparity became decoupled during the Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:34283433.CrossRefGoogle Scholar
Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304321.CrossRefGoogle Scholar
Berry, W. B. N. 1962. Graptolite occurrence and ecology. Journal of Paleontology 36:285293.Google Scholar
Bjørklund, K. R., Kruglikova, S. B., and Anderson, O. R.. 2012. Modern incursions of tropical radiolaria into the Arctic Ocean. Journal of Micropalaeontology 31:139158.CrossRefGoogle Scholar
Boyajian, G. E. 1991. Taxon age and selectivity of extinction. Paleobiology 17:4957.CrossRefGoogle Scholar
Boyle, J. T., Sheets, H. D., Wu, S.-Y., Goldman, D., Melchin, M. J., Cooper, R. A., Sadler, P. M., and Mitchell, C. E.. 2014. A re-examination of the contributions of biofacies and geographic range to extinction risk in Ordovician graptolites. GFF 136:3841.CrossRefGoogle Scholar
Brenchley, P. J., Marshall, J. D., and Underwood, C. J.. 2001. Do all mass extinction represent an ecological crisis? Evidence from the Late Ordovician. Geologic Journal 36:329340.CrossRefGoogle Scholar
Bretsky, P. W. 1973. Evolutionary patterns in the Paleozoic Bivalvia: documentation and some theoretical considerations. Geological Society of America Bulletin 84:20792096.2.0.CO;2>CrossRefGoogle Scholar
Brown, J. H., Stevens, G. C., and Kaufman, D. M.. 1996. The geographic range: size, shape, boundaries, and internal structure. Annual Review of Ecological Systematics 27:597623.CrossRefGoogle Scholar
Burgman, M. A., and Fox, J. C.. 2003. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Animal Conservation 6:1928.CrossRefGoogle Scholar
Calner, M., Lehnert, O., and Nõlvak, J.. 2010. Palaeokarst evidence for widespread regression and subaerial exposure in the middle Katian (Upper Ordovician) of Baltoscandia: significance for global climate. Palaeogeography, Paleoclimatology, Paleoecology 296:235247.CrossRefGoogle Scholar
Chen, X., Yuan-Dong, Z., and Mitchell, C. E.. 2001. Early Darriwilian graptolites from central and western China. Alcheringa: An Australian Journal of Paleontology 25:191201.Google Scholar
Chen, X., Melchin, M. J., Sheets, H. D., Mitchell, C. E., and Jun-Xuan, F.. 2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from south China. Journal of Paleontology 79:842861.Google Scholar
Christiansen, J. L., and Stouge, S.. 1999. Oceanic circulation as an element in palaeogeographical reconstructions: the Arenig (early Ordovician) as an example. Terra Nova 11:7378.CrossRefGoogle Scholar
Cisne, J. L., and Chandlee, G. O.. 1982. Taconic foreland basin graptolites: age zonation, depth zonation, and use in ecostratigraphic correlation. Lethaia 15:343363.CrossRefGoogle Scholar
Cooper, R. A. 1999. Ecostratigraphy, zonation and global correlation of earliest Ordovician planktic graptolites. Lethaia 32:116.CrossRefGoogle Scholar
Cooper, R. A., and Sadler, P. M.. 2010. Biofacies preference predicts extinction risk in Ordovician Graptolites. Paleobiology 36:167187.CrossRefGoogle Scholar
Cooper, R. A., and Sadler, P. M.. 2012. The Ordovician Period. Pp. 489555 in F. Gradstein, J. Ogg, M. Schmitz, and G. Ogg, eds. The Geologic Time Scale 2012. Elsevier, Oxford.CrossRefGoogle Scholar
Cooper, R. A., Fortey, R. A., and Lindholm, K.. 1991. Latitudinal and depth zonation of early Ordovician graptolites. Lethaia 24:199218.CrossRefGoogle Scholar
Cooper, R. A., Rigby, S., Loydell, D. K., and Bates, D.E.B.. 2012. Palaeoecology of the Graptoloidea. Earth-Science Reviews 112:2341.CrossRefGoogle Scholar
Cooper, R. A., Sadler, P. M., Munnecke, A., and Crampton, J. S.. 2014. Graptoloid evolutionary rates track Ordovician–Silurian global climate change. Geological Magazine 151:349364.CrossRefGoogle Scholar
Crampton, J. S., Cooper, R. A., Sadler, P. M., and Foote, M.. 2016. Greenhouse–icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton. Proceedings of the National Academy of Sciences USA 113:14981503.CrossRefGoogle Scholar
Curran-Everett, D. 2000. Multiple comparisons: philosophies and illustrations. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 279:R1R8.Google ScholarPubMed
Dunhill, A. M., and Wills, M. A.. 2015. Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis. Nature Communications 6:18.CrossRefGoogle Scholar
Dunhill, A. M., Hannisdal, B., and Benton, M. J.. 2014. Disentangling rock record bias and common-cause from redundancy in the British fossil record. Nature Communications 5:19.CrossRefGoogle ScholarPubMed
Erdtmann, B.-D. 1976. Ecostratigraphy of Ordovician graptoloids. Pp. 621–643 in M. G. Bassett, ed. The Ordovician System: Proceedings of a Palaeontological Association Symposium, Birmingham, September 1974. University of Wales Press and National Museum of Wales, Cardiff.Google Scholar
Erwin, D. H. 1989. Regional paleoecology of Permian gastropod genera, southwestern United States and the end-Permian mass extinction. Palaios 4:424438.CrossRefGoogle Scholar
Finnegan, S., Payne, J. L., and Wang, S. C.. 2008. The Red Queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34:318341.CrossRefGoogle Scholar
Finnegan, S., Heim, N. A., Peters, S. E., and Fischer, W. W.. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:68296834.CrossRefGoogle ScholarPubMed
Finney, S. C. 1984. Biogeography of Ordovician graptolites in the southern Appalachians. Pp. 167176 in D. L. Bruton, ed. Aspects of the Ordovician System. Norsk, Universitetsforlaget, Oslo.Google Scholar
Finney, S. C. 1986. Graptolite biofacies and correlation of eustatic, subsidence, and tectonic events in the Middle to Upper Ordovician of North America. Palaios 1:435461.CrossRefGoogle Scholar
Finney, S. C., and Berry, W. B. N.. 1997. New perspectives on graptolite distributions and their use as indicators of platform margin dynamics. Geology 25:919922.2.3.CO;2>CrossRefGoogle Scholar
Finney, S. C., Berry, W. B. N., and Cooper, J. D.. 2007. The influence of denitrifying seawater on graptolite extinction and diversification during the Hirnantian (latest Ordovician) mass extinction event. Lethaia 40:281291.CrossRefGoogle Scholar
Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vié, J.-C., Akçakaya, H. R., Angulo, A., DeVantier, L. M., Gutsche, A., Turak, E., Cao, L., Donner, S. D., Katariya, V., Bernard, R., Holland, R. A., Hughes, A. F., O’Hanlon, S. E., Garnett, S. T., Şekercioğlu, Ç. H., and Mace, G. M.. 2013. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians, and corals. PLoS ONE 8:e65427.CrossRefGoogle ScholarPubMed
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74102.CrossRefGoogle Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.CrossRefGoogle Scholar
Foote, M. 2007a. Extinction and quiescence in marine animal genera. Paleobiology 33:261272.CrossRefGoogle Scholar
Foote, M. 2007b. Symmetric waxing and waning of marine invertebrate genera. Paleobiology 33:517529.CrossRefGoogle Scholar
Foote, M., and Miller, A. I.. 2013. Determinant of early survival in marine animal genera. Paleobiology 39:171192.CrossRefGoogle Scholar
Foote, M., Crampton, J. S., Beu, A. G., Marshall, B. A., Cooper, R. A., Maxwell, P. A., and Matcham, I.. 2007. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science 318:11311134.CrossRefGoogle ScholarPubMed
Foote, M., Crampton, J. S., Beau, A. G., and Cooper, R. A.. 2008. On the bidirectional relationship between geography range and taxonomic duration. Paleobiology 34:421433.CrossRefGoogle Scholar
Fortey, R. A., and Cocks, L. R. M.. 1986. Marginal faunal belts and their structural implications, with examples from the Lower Palaeozoic. Journal of the Geological Society, London 143:151160.CrossRefGoogle Scholar
Fortey, R.A., and Cooper, R. A.. 1986. A phylogenetic classification of the graptoloids. Palaeontology 29:631654.Google Scholar
Gaston, K. J. 1994. Geographic range sizes. Ecography 17:198205.CrossRefGoogle Scholar
Gaston, K. J., and Fuller, R. A.. 2009. The size of species’ geographic ranges. Journal of Applied Ecology 46:19.CrossRefGoogle Scholar
Gaston, K. J., Quinn, R. M., Wood, S., and Arnold, H. R.. 1996. Measure of geographic range size: the effect of sample size. Ecography 19:259268.CrossRefGoogle Scholar
Goetze, E. 2011. Population differentiation in the open sea: insights from the pelagic copepod Pleuromamma xiphas . Integrative and Comparative Biology 51:580597.CrossRefGoogle Scholar
Goldman, D., Leslie, S. A., Nõlvak, J., Young, S., Bergström, S. M., and Huff, W. D.. 2007. The global stratotype section and point (GSSP) for the base of the Katian Stage of the Upper Ordovician Series at Black Knob Ridge, southeastern Oklahoma, USA. Episodes 30:258270.Google Scholar
Goldman, D., and Wu, S.-Y.. 2010. Paleogeographic, paleoceanographic, and tectonic controls on early Late Ordovician graptolite diversity patterns. In S. C. Finney, and W. B. N. Berry, eds. The Ordovician Earth system. Geological Society of America Special Paper 466:149161.Google Scholar
Goldman, D., Bergström, S. M., Sheets, H. D., and Pantle, C.. 2013a. A CONOP9 composite taxon range chart for Ordovician conodonts from Baltoscandia: a framework for biostratigraphic correlation and maximum-likelihood biodiversity analyses. GFF 136:342354.CrossRefGoogle Scholar
Goldman, D., Maletz, J., Melchin, M. J., and Fan, J.. 2013b. Lower Paleozoic graptolite biogeography. In D. A. T. Harper, and T. Servais, eds. Early Paleozoic Palaeobiogeography and Palaeogeography. Geological Society of London Memoir 38:415428.Google Scholar
Graham, R. L., and Hell, P.. 1985. On the history of the minimum spanning tree problem. Annals of the History of Computing 7:4357.CrossRefGoogle Scholar
Hallam, A., and Wignall, P. B.. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford.Google Scholar
Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6:193207.CrossRefGoogle Scholar
Harnik, P. G. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:1359413599.CrossRefGoogle ScholarPubMed
Harper, D. A. T., and Rong, J.-Y.. 2001. Paleozoic brachiopod extinctions survival and recovery: patterns within the rhynchonelliformeans. Geological Journal 36:317328.CrossRefGoogle Scholar
Harnik, P. G., Simpson, C., and Payne, J. L.. 2012. Long-term differences in extinction risk among the seven forms of rarity. Proceedings of the Royal Society of London B 279:49694976.CrossRefGoogle ScholarPubMed
Heim, N. A., and Peters, S. E.. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:112.CrossRefGoogle ScholarPubMed
Herrmann, A. D., Haupt, B. J., Patzkowsky, M. E., Seidov, D., and Slingerland, R. L.. 2004. Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 210:385401.CrossRefGoogle Scholar
Hoffman, A., and Kitchell, J. A.. 1984. Evolution in a pelagic planktic system: a paleobiologic test of multispecies evolution. Paleobiology 10:933.CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E.. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios 17:134146.2.0.CO;2>CrossRefGoogle Scholar
Hopkins, M. J. 2011. How species longevity, interspecific morphological variation, and geographical range size are related: a comparison using Late Cambrian trilobites. Evolution 65:32533273.CrossRefGoogle Scholar
International Union for the Conservation of Nature 2012. IUCN red list categories and criteria, Version 3.1, 2nd ed. IUCN, Gland, Switzerland.Google Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.CrossRefGoogle ScholarPubMed
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.CrossRefGoogle Scholar
Jablonski, D. 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105:1152811538.CrossRefGoogle ScholarPubMed
Jablonski, D., and Hunt, G.. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organisms versus species-level explanations. American Naturalist 168:556564.CrossRefGoogle Scholar
Jablonski, D., and Raup, D. M.. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.CrossRefGoogle ScholarPubMed
Jacobs, D. K., and Lindberg, D. R.. 1998. Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proceedings of the National Academy of Sciences USA 95:93969401.CrossRefGoogle Scholar
Jeffery, C. H. 2001. Heart urchins at the Cretaceous/Tertiary boundary: a tale of two clades. Paleobiology 27:140158.2.0.CO;2>CrossRefGoogle Scholar
Kajlo, D., Hints, L., Hints, O., Männik, P., Martma, T., and Nõlvak, J.. 2011. Katian prelude to the Hirnantian (Late Ordovician) mass extinction: a Baltic perspective. Geological Journal 46:464477.Google Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I.. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25:219222.2.3.CO;2>CrossRefGoogle Scholar
Kiessling, W., and Aberhan, M.. 2007. Geographical distributions and extinction risk: lessons from Triassic–Jurassic marine benthic organisms. Journal of Biogeography 34:14731489.CrossRefGoogle Scholar
Le Hérissé, A., Gourvennec, R., and Wicander, R.. 1997. Biogeography of the Late Silurian and Early Devonian acritarchs and prasinophytes. Review of Palaeobotany and Palynology 98:105124.CrossRefGoogle Scholar
Lester, S. E., and Ruttenburg, B. I.. 2005. The relationship between pelagic, larval duration and range size in tropical reef fishes: a synthetic analysis. Proceedings of the Royal Society of London B 272:585591.CrossRefGoogle ScholarPubMed
Lester, S. E., Ruttenburg, B. I., Gaines, S. D., and Kinlan, B. P.. 2007. The relationship between dispersal ability and geographic range size. Ecology Letters 10:745758.CrossRefGoogle ScholarPubMed
Levin, D. A., and Wilson, A. C.. 1976. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proceedings of the National Academy of Sciences USA 73:20862090.CrossRefGoogle ScholarPubMed
Levin, L. A. 2003. Oxygen minimum zone benthos: adaptation and community responses to hypoxia. Oceanography and Marine Biology: An Annual Review 41:145.Google Scholar
Liow, L. H. 2007. Does versatility as measured by geographic range, bathymetric range and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117128.CrossRefGoogle Scholar
Liow, L. H., and Stenseth, N. C.. 2007. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society of London B 274:27452752.CrossRefGoogle ScholarPubMed
Liow, L. H., Fortelius, M., Lintulaakso, K., Mannila, H., and Stenseth, N. C.. 2009. Lower extinction risk in sleep-or-hide mammals. American Naturalist 173:264272.CrossRefGoogle Scholar
Maletz, J. 2014. The classification of the Pterobranchia (Cephalodiscida and Graptolithina). Bulletin of Geosciences 89:164.Google Scholar
Maletz, J., Carlucci, J., and Mitchell, C. E.. 2009. Graptolite cladistics, taxonomy and phylogeny. Bulletin of Geosciences 84:719.CrossRefGoogle Scholar
McRoberts, C. A., and Newton, C. R.. 1995. Selective extinction among end-Triassic European bivalves. Geology 23:102104.2.3.CO;2>CrossRefGoogle Scholar
Melchin, M. J., and Mitchell, C. E.. 1991. Late Ordovician extinction in the Graptoloidea. In C. R. Barnes, and S. H. Williams, eds. Advances in Ordovician Geology. Geological Survey of Canada 90:143156.Google Scholar
Melchin, M. J., Mitchell, C. E., Naczk-Cameron, A., Fan, J. X., and Loxton, J.. 2011. Phylogeny and adaptive radiation of the Neograptina (Graptoloidea) during the Hirnantian mass extinction and Silurian recovery. Proceedings of the Yorkshire Geological Society 58:281309.CrossRefGoogle Scholar
Melchin, M. J., Sadler, P. M., Cramer, B. D., Cooper, R. A., Gradstein, F. M., and Hammer, Ø.. 2012. The Silurian Period. Pp. 525558 in F. Gradstein, J. Ogg, M. Schmitz, and G. Ogg, eds. The Geologic Time Scale 2012. Elsevier, Oxford.CrossRefGoogle Scholar
Melchin, M. J., Mitchell, C. E., Holmden, C., and Štorch, P.. 2013. Environmental changes in the Late Ordovician-early Silurian: review and new insights from black shale and nitrogen isotopes. Geological Society of America Bulletin 125:16351670.CrossRefGoogle Scholar
Mevik, B.-H., and Wehrens, R.. 2007. The pls package: principal component and partial least squares regression in R. Journal of Statistical Software 18:124.CrossRefGoogle Scholar
Miller, A. I. 1997. A new look at age and area: the geographic and environmental expansion of genera during the Ordovician radiation. Paleobiology 23:410419.CrossRefGoogle Scholar
Mitchell, C. E. 1990. Directional graptolite macroevolution of the diplograptacean graptolites: a product of astogenetic heterochrony and directed speciation. In P. D. Taylor, and G. P. Larwood, eds. Major evolutionary radiations. Systematics Association Special Volume 42:235264. Clarendon, Oxford.Google Scholar
Mitchell, C. E., Sheets, H. D., Belscher, K., Finney, S. C., Holmden, C., LaPorte, D. F., Melchin, M. J., and Patterson, W. P.. 2007. Species abundance changes during mass extinctions and the inverse Signor-Lipps effect: apparently abrupt graptolite mass extinction as an artifact of sampling. Acta Palaeontologica Sinica 46:340346.Google Scholar
Mullins, H. T., Thompson, J. B., McDougall, K., and Vercoutere, T. L.. 1985. Oxygen-minimum zone edge effects: evidence from the central California coastal upwelling system. Geology 13:491494.2.0.CO;2>CrossRefGoogle Scholar
Navas, A., Baldwin, J. G., Barrios, L., and Nombela, G.. 1993. Phylogeny and biogeography of Longidorus (Nematoda: Longidoridae) in Euromediterranea. Nematologia Mediterranea 21:7188.Google Scholar
Norris, R. D. 2000. Pelagic species diversity, biogeography, and evolution. Paleobiology 26:236258.CrossRefGoogle Scholar
Parker, W. C., Feldman, A., and Arnold, A. J.. 1999. Paleobiogeographic patterns in the morphological diversification of the Neogene planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 152:114.CrossRefGoogle Scholar
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.CrossRefGoogle Scholar
Peters, S. E. 2006. Genus extinction, origination, and the duration of sedimentary hiatuses. Paleobiology 32:387407.CrossRefGoogle Scholar
Peters, S. E., and Foote, M.. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.2.0.CO;2>CrossRefGoogle Scholar
Polcyn, M. J., Jacobs, L. L., Araújo, R., and Schulp, A. S.. 2013. Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 400:1727.CrossRefGoogle Scholar
Pope, M. C., and Steffen, J. B.. 2003. Widespread, prolonged late Middle to Late Ordovician upwelling in North America: a proxy record of glaciation? Geology 31:6366.2.0.CO;2>CrossRefGoogle Scholar
Powell, M. G. 2007. Geographic range and genus longevity of Late Paleozoic brachiopods. Paleobiology 33:530546.CrossRefGoogle Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 22:10651071.CrossRefGoogle Scholar
Raup, D. M., and Sepkoski, J. J.. 1982. Mass extinction in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Rapoport, E. 1982. Areography: geographical strategies of species. Pergamon, Oxford.Google Scholar
Rigby, S. 1991. Feeding strategy in graptoloids. Paleontology 34:797813.Google Scholar
Robertson, D. B. R., Brenchley, P. J., and Owen, A.W.. 1991. Ecological disruption close to the Ordovician–Silurian boundary. Historical Biology 5:131144.CrossRefGoogle Scholar
Rode, A. L., and Lieberman, B. S.. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 211:345359.CrossRefGoogle Scholar
Rogers, A. D. 2000. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep-Sea Research II 47:119148.CrossRefGoogle Scholar
Rong, J.-Y., Chen, X., and Harper, D. A. T.. 2002. The latest Ordovician Hirnantia fauna (Brachiopoda) in time and space. Lethaia 35:231249.Google Scholar
Rong, J.-Y., Melchin, M. J., Williams, S. H., Koren, T. N., and Verniers, J.. 2008. Report of the study of the defined global stratotype of the base of the Silurian System. Episodes 31:315318.Google Scholar
Rothwell Group. 2007. PaleoGIS/Arcview 3.5, PALEOMAP Project. University of Texas at Arlington.Google Scholar
Russell, M. P., and Lindberg, D. R.. 1988. Real and random patterns associated with molluscan spatial and temporal distributions. Paleobiology 14:322330.CrossRefGoogle Scholar
Sadler, P. M., Kemple, W. G., and Kooser, M. A.. 2003. Contents of the compact disk—CONOP9 programs for solving the stratigraphic correlation and seriation problems as constrained optimization. In P. J. Harries, ed. High resolution approaches in stratigraphic paleontology. Topics in Geobiology 21:461465. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
Sadler, P. M., Cooper, R. A., and Melchin, M. J.. 2009. High-resolution, early Paleozoic (Ordovician–Silurian) time scales. Geological Society of America Bulletin 121:887906.CrossRefGoogle Scholar
Sadler, P. M., Cooper, R. A., and Melchin, M. J.. 2011. Sequencing the graptolite clade: building a global diversity curve from local range charts, regional time-charts and global time-lines. Proceedings of the Yorkshire Geological Society 58:329343.CrossRefGoogle Scholar
Seghouane, A.-K. 2011. New AIC corrected variants for multivariate linear regression model selection. IEEE Transactions on Aerospace and Electronic Systems 47:11541164.CrossRefGoogle Scholar
Servais, T., Owen, A. W., Harper, D. A. T., Kröger, B., and Munnecke, A.. 2010. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology 294:99119.CrossRefGoogle Scholar
Shaw, A. B. 1964. Time in stratigraphy. McGraw-Hill, New York.Google Scholar
Sheehan, P. M., and Coorough, P. J.. 1990. Brachiopod zoogeography across the Ordovician–Silurian extinction event. Geological Society of London Memoir 12:181187.CrossRefGoogle Scholar
Sheehan, P. M., Coorough, P. J., and Fastovsky, D. E.. 1996. Biotic selectivity during the K/T and Late Ordovician extinction events. Geological Society of America Special Paper 307:477489.Google Scholar
Simpson, C., and Harnik, P. G.. 2009. Assessing the role of abundance in marine bivalve extinction over the post-Paleozoic. Paleobiology 35:631647.CrossRefGoogle Scholar
Smith, A. B., and Jeffery, C. H.. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:6971.CrossRefGoogle Scholar
Smith, A. B., and Jeffery, C. H.. 2000. Changes in the diversity, taxic composition and life-history patterns of echinoids over the past 145 million years. Pp. 181194 in S. J. Culver, and P. F. Rawson, eds. Biotic response to global change: the last 145 million years. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Smith, A. B., and McGowan, A. J.. 2007. The shape of the Phanerozoic marine paleodiversity curve: how much can be predicted from the sedimentary rock record of western Europe? Palaeontology 50:765774.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution: patterns and processes. Johns Hopkins University Press, Baltimore, Md.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene bivalvia. Paleobiology 12:89110.CrossRefGoogle Scholar
Stanley, S. M., Wetmore, K. L., and Kennett, J. P.. 1988. Macroevolutionary differences between the two major clades of Neogene planktonic foraminifera. Paleobiology 14:235249.CrossRefGoogle Scholar
Steeman, M. E., Hebsgaard, M. B., Fordyce, R. E., Ho, S. W. Y., Rabosky, D. L., Nielsen, R., Rahbek, C., Glenner, H., Sørensen, M. V., and Willerslev, E.. 2009. Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology 58:573585.CrossRefGoogle ScholarPubMed
Štorch, P., Mitchell, C. E., Finney, S. C., and Melchin, M. J.. 2011. Uppermost Ordovician (upper Katian–Hirnantian) graptolites of north-central Nevada, U.S.A. Bulletin of Geosciences 86:301386.CrossRefGoogle Scholar
Sunday, J. M., Bates, A. E., and Dulvy, N. K.. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B 278:18231830.CrossRefGoogle Scholar
Teller, L. 1969. The Silurian biostratigraphy of Poland based on graptolites. Acta Geological Polonica 19:393501.Google Scholar
Torsvik, T. H., and Cocks, L. R. M.. 2009. BugPlates: linking biogeography and palaeogeography. Software manual. Scholar
Torsvik, T. H., and Cocks, L. R. M.. 2013. New global palaeogeographical reconstructions for the Early Paleozoic and their generation. Geological Society of London Memoir 38:524.CrossRefGoogle Scholar
Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C., and Nicoll, R. S.. 2008. Did cooling trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321:550554.CrossRefGoogle ScholarPubMed
Vandenbroucke, T. R. A., Armstrong, H. A., Williams, M., Zalasiewicz, J. A., and Sabbe, K.. 2009. Ground-truthing Late Ordovician climate models using the palaeobiogeography of graptolites. Paleoceanography 24:119.CrossRefGoogle Scholar
Vandenbroucke, T. R. A., Armstrong, H. A., Williams, M., Paris, F., Zalasiewicz, J. A., Sabbe, K., Nõlvak, J., Challands, T. J., Verniers, J., and Servais, T.. 2010. Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic icehouse. Proceedings of the National Academy of Sciences USA 107:1498314986.CrossRefGoogle ScholarPubMed
Vilhena, D. A., Harris, E. B., Bergstrom, C. T., Maliska, M. E., Ward, P. D., Sidor, C. A., Strömberg, C. A. E., and Wilson, G. P.. 2013. Bivalve network reveals latitudinal selectivity gradient at the end-Cretaceous mass extinction. Scientific Reports 3:15.CrossRefGoogle Scholar
Wall, P. D., Ivany, L. C., and Wilkinson, B. H.. 2009. Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology 35:146167.CrossRefGoogle Scholar
Wilde, P. 1991. Oceanography in the Ordovician. In C. R. Barnes, and S. H. Williams, eds. Advances in Ordovician Geology. Geological Survey of Canada Paper 90–9:283298.Google Scholar
Young, S. A., Saltzman, M. R., Foland, K. A., Linder, J. S., and Kump, L. R.. 2009. A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): links to volcanism and climate? Geology 37:951954.CrossRefGoogle Scholar
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The impact of geographic range, sampling, ecology, and time on extinction risk in the volatile clade Graptoloida
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The impact of geographic range, sampling, ecology, and time on extinction risk in the volatile clade Graptoloida
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The impact of geographic range, sampling, ecology, and time on extinction risk in the volatile clade Graptoloida
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *