Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-h2mp8 Total loading time: 0.284 Render date: 2021-07-29T07:19:34.621Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Evaluating taxonomic turnover: Pennsylvanian–Permian brachiopods and bivalves of the North American Midcontinent

Published online by Cambridge University Press:  20 May 2016

Thomas D. Olszewski
Affiliation:
Department of Geological Sciences, Indiana University, Bloomington, Indiana 47405. tolszews@indiana.edu
Mark E. Patzkowsky
Affiliation:
Department of Geosciences, Pennsylvanian State University, University Park, Pennsylvania 16802. brachio@geosc.psu.edu
Corresponding

Abstract

Using museum and literature data, we characterize faunal turnover in bivalves and brachiopods of the North American Midcontinent over approximately 12.5 Myr spanning the Pennsylvanian/Permian boundary. The two groups experienced indistinguishable rates of background faunal turnover but differed in the type and timing of elevated turnover episodes. Bivalves underwent an episode of elevated first appearance in the Missourian Series whereas brachiopods underwent an episode of elevated disappearance in the Wolfcampian Series. In neither group does turnover history strongly correlate to long-term changes in basinal lithofacies, which reflect evolution of regional climate. Comparison with other time intervals and basins suggests that magnitude and frequency of turnover episodes during the late Paleozoic was intermediate between the more episodic early Paleozoic and less episodic Mesozoic.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.CrossRefGoogle Scholar
Alroy, J. 1998. Equilibrial diversity dynamics in North American mammals. Pp. 232287in Mc, M. L.Kinney and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Baars, D. L.Ritter, S. M.Maples, C. G.Ross, C. A. 1994. Redefinition of the Upper Pennsylvanian Virgilian Series in Kansas. Pp. 1116in Baars, D. L., ed. Revision of stratigraphic nomenclature in Kansas. Bulletin of the Kansas Geological Survey No. 230.Google Scholar
Boardman, D. R.Heckel, P. H.Barrick, J. E.Nestell, M.Peppers, R.A. 1990. Middle-Upper Pennsylvanian chronostratigraphic boundary in the Midcontinent region of North America. Courier Forschungsinstitut Senckenberg 130:319337.Google Scholar
Boardman, D. R. IIWardlaw, B. R.Nestell, M. K. 1996. High resolution biostratigraphic analysis of Late Carboniferous-Lower Permian fourth order depositional sequences from the North American Midcontinent. In Repetski, J. E., ed. Sixth North American Paleontological Convention, Abstracts of papers. Paleontological Society Special Publication 8:37.Google Scholar
Boardman, D. R.Work, D. M.Mapes, R. H.Barrick, J. E. 1994. Biostratigraphy of Middle and Late Pennsylvanian (Desmoinesian-Virgilian) ammonoids. Bulletin of the Kansas Geological Survey No. 232.Google Scholar
Bottjer, D. J.Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of Post-Paleozoic benthic marine invertebrates. Palaios 3:540560.CrossRefGoogle Scholar
Brett, C. E.Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. Pp. 285315in Erwin, D. H.Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Budd, A. F.Johnson, K. G. 1999. Origination preceding extinction during late Cenozoic turnover of Caribbean reefs. Paleobiology 25:188200.CrossRefGoogle Scholar
Buzas, M. A.Culver, S. J. 1994. Species pool and dynamics of marine paleocommunities. Science 264:14391441.CrossRefGoogle Scholar
Buzas, M. A.Culver, S. J. 1998. Assembly, disassembly, and balance in marine paleocommunities. Palaios 13:263275.CrossRefGoogle Scholar
Cecil, C. B. 1990. Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology 18:533536.2.3.CO;2>CrossRefGoogle Scholar
Chuvashov, B. I.Foster, C. B.Mizens, G. A.Roberts, J.Claoué-Long, J. C. 1996. Radiometric (SHRIMP) dates for some biostratigraphic horizons and event levels from the Russian and Eastern Australian Upper Carboniferous and Permian. Permophiles 28:2936.Google Scholar
Drake, J. A. 1989. Communities as assembled structures: do rules govern pattern? Trends in Ecology and Evolution 5:159163.CrossRefGoogle ScholarPubMed
Drake, J. A. 1991. Community assembly mechanics and the structure of an experimental species ensemble. American Naturalist 137:126.CrossRefGoogle Scholar
Dunbar, C. O.Condra, G. E. 1932. Brachiopoda of the Pennsylvanian System in Nebraska. Nebraska Geological Survey Bulletin, series 2, No 5.Google Scholar
Foote, M. 1994. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology 20:424444.CrossRefGoogle Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. In Erwin, D. H.Wing, S. L., eds. Deep time: Paleobiology‘s perspective. Paleobiology 26(Suppl. to No. 4):74102.Google Scholar
Gotelli, N. J.Graves, G. R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, D.C.Google Scholar
Harland, W. B.Armstrong, R. L.Cox, A. V.Craig, L. E.Smith, A. G.Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar
Heckel, P. H. 1984. Factors in Mid-Continent Pennsylvanian limestone deposition. Pp. 2550in Hyne, N. J., ed. Limestones of the Midcontinent. Tulsa Geological Society Special Publication 2.Google Scholar
Heckel, P. H. 1986. Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive depositional cycles along Midcontinent outcrop belt, North America. Geology 14:330334.2.0.CO;2>CrossRefGoogle Scholar
Heckel, P. H. 1994. Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic effects. In Dennison, J. M.Ettensohn, F. R., eds. Tectonic and eustatic controls of sedimentary cycles. Society of Economic Paleontologists and Mineralogists Concepts in Sedimentology and Paleontology 4:6587.Google Scholar
Hess, J. C.Lippolt, H. J. 1986. 40Ar/39Ar ages of tonstein and tuff sanidines: new calibration points for the improvement of the Upper Carboniferous time scale. Chemical Geology (Isotope Geoscience Section) 59:143154.CrossRefGoogle Scholar
Hess, J. C.Lippolt, H. J.Burgher, K. 1999. High-precision 40Ar/39Ar spectrum dating on sanidine from the Donets Basin, Ukraine: evidence for correlation problems in the Upper Carboniferous. Journal of the Geological Society, London 156:527533.CrossRefGoogle Scholar
Hoare, R. D. 1961. Desmoinesian Brachiopoda and Mollusca from Southwestern Missouri. University of Missouri Studies 36.Google Scholar
Hoare, R. D.Sturgeon, M. T.Kindt, E. A. 1979. Pennsylvanian marine Bivalvia and Rostroconcha of Ohio. Ohio Geological Survey Bulletin 67.Google Scholar
Holterhoff, P. F. 1995. Diversity structure of Permo-Pennsylvanian crinoid faunas from Midcontinent North America: relationships between alpha and gamma. Geological Society of America Abstracts with Programs 27:A60.Google Scholar
Huyhn, T. T.Sageman, B. B.Kauffman, E. G. 1999. Test of coordinated stasis in the faunal record of Upper Cretaceous strata, Western Interior, U.S. Geological Society of America Abstracts with Programs 31:A439.Google Scholar
Jackson, J. B. C.Budd, A. F.Pandolfi, J. M. 1996. The shifting balance of natural communities. Pp. 89122in Jablonski, D.Erwin, D. H.Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Johnson, J. G. 1974. Extinction of perched faunas. Geology 2:479482.2.0.CO;2>CrossRefGoogle Scholar
Kunk, M. J.Rice, C. L. 1994. High-precision 40Ar/39Ar age spectrum dating of sanidine from the Middle Pennsylvanian Fire Clay tonstein of the Appalachian basin. In Rice, C. L., ed. Elements of Pennsylvanian Stratigraphy, Central Appalachian Basin. Geological Society of America Special Paper 294:105113.CrossRefGoogle Scholar
Ludvigsen, R.Westrop, S. R. 1983. Trilobite biofacies of the Cambrian-Ordovician boundary interval in northern North America. Alcheringa 7:301319.CrossRefGoogle Scholar
Malinky, J. M.Heckel, P. H. 1998. Paleoecology and taphonomy of faunal assemblages in gray “core” (offshore) shales in Midcontinent Pennsylvanian cyclothems. Palaios 13:311334.CrossRefGoogle Scholar
McAlester, A. L. 1968. Type species of Paleozoic nuculoid bivalve genera. Geological Society of America Memoir No. 105.Google Scholar
Menning, M.Weyer, D.Drozdzewski, G., H. W. J. van Ameron, and Wendt, I. 2000. A Carboniferous time scale 2000: discussion and use of geological parameters as time indicators from Central and Western Europe. Geologisches Jahrbuch A 156:344.Google Scholar
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.CrossRefGoogle ScholarPubMed
Miller, A. I.Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.CrossRefGoogle ScholarPubMed
Moore, R. C. 1964. Paleoecological aspects of Kansas Pennsylvanian and Permian cyclothems. In Merriam, D. F., ed. Symposium on Cyclic Sedimentation. Bulletin of the Kansas Geological Survey 169:287380.Google Scholar
Mudge, M. R.Yochelson, E. L. 1962. Stratigraphy and paleontology of the uppermost Pennsylvanian and lowermost Permian rocks in Kansas. U.S. Geological Survey Professional Paper 323.Google Scholar
Muir-Wood, H.Cooper, G. A. 1960. Morphology, classification and life habits of the Productoidea (Brachiopoda). Geological Society of America Memoir 81.CrossRefGoogle Scholar
Olszewski, T. D. 2000. Testing for a relationship between paleocommunity recurrence and taxonomic turnover using a sequence stratigraphic framework. Ph.d. dissertation. Pennsylvania State University, State College.Google Scholar
Olszewski, T. D.Patzkowsky, M. E. 2001. Measuring recurrence of marine biotic gradients: a case study from the Pennsylvanian-Permian Midcontinent. Palaios 16:444460.2.0.CO;2>CrossRefGoogle Scholar
Patzkowsky, M. E. 1999. A new agenda for evolutionary paleoecology—or would you in the background please step forward. Palaios 14:195197.CrossRefGoogle Scholar
Patzkowsky, M. E.Holland, S. M. 1997. Patterns of turnover in Middle and Upper Ordovician brachiopods of the eastern United States: a test of coordinated stasis. Paleobiology 23:420443.CrossRefGoogle Scholar
Patzkowsky, M. E.Holland, S. M. 1999. Biofacies replacement in a sequence stratigraphic framework: Middle and Upper Ordovician of the Nashville Dome, Tennessee, USA. Palaios 14:301323.CrossRefGoogle Scholar
Pimm, S. L. 1991. The balance of nature? Ecological issues in the conservation of species and communities. Chicago University Press, Chicago.Google Scholar
Post, W. M.Pimm, S. L. 1983. Community assembly and food web stability. Mathematical Biosciences 64:169192.CrossRefGoogle Scholar
Puckette, J.Boardman, D. R. IIAl-Shaieb, Z. 1995. Evidence for sea-level fluctuation and stratigraphic sequences in the Council Grove Group (Lower Permian), Hugoton, Embayment, southern Mid-Continent. Pp. 269290in Hyne, N. J., ed. Sequence stratigraphy of the Mid-Continent. Tulsa Geological Society, Tulsa, Okla.Google Scholar
Rasbury, E. T.Hanson, G. N.Meyers, W. J.Holt, W. E.Goldstein, R. H.Saller, A. H. 1998. U-Pb dates of paleosols: constraints on late Paleozoic cycle durations and boundary ages. Geology 26:403406.2.3.CO;2>CrossRefGoogle Scholar
Raup, D. M. 1978. Cohort analysis of generic survivorship. Paleobiology 4:114.CrossRefGoogle Scholar
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11:4252.CrossRefGoogle Scholar
Raup, D. M. 1991. The future of analytical paleobiology. In Gilinsky, N. L.Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:207216. Paleontological Society, Knoxville, Tenn.Google Scholar
Raup, D. M.Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011502.CrossRefGoogle ScholarPubMed
Russell, G. J. 1998. Turnover dynamics across ecological and geological scales. Pp. 377404in McKinney, M. L.Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Schopf, K. M.Ivany, L. C. 1997. Comment on “Long-term faunal stasis without evolutionary coordination: Jurassic benthic marine paleocommunities, Western Interior, United States.” Geology 25:473.Google Scholar
Sepkoski, J. J. Jr. 1987. Environmental trends in extinction during the Paleozoic. Science 235:6466.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1991. A model of onshore-offshore change in faunal diversity. Paleobiology 17:5877.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. Pp. 3551in Walliser, O. H., ed. Global events and event stratigraphy in the Phanerozoic. Springer, New York.CrossRefGoogle Scholar
Sepkoski, J. J. Jr.Koch, C. F. 1996. Evaluating paleontological data relating to bio-events. Pp. 2134in Walliser, O. H., ed. Global events and event stratigraphy in the Phanerozoic. Springer, New York.CrossRefGoogle Scholar
Sepkoski, J. J. Jr.Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. Pp. 153190in Valentine, J., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Signor, R. W.Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. In Silver, L. T.Schulz, P. H., eds. Geological implications of impacts of large asteroids and comets on the earth. Geological Society of America Special Paper 190:291296.CrossRefGoogle Scholar
Smith, W.Grassle, F. 1977. Sampling properties of a family of diversity measures. Biometrics 33:283292.CrossRefGoogle Scholar
Sturgeon, M. T.Hoare, R. D. 1968. Pennsylvanian brachiopods of Ohio. Ohio Geological Survey Bulletin 63.Google Scholar
Tang, C. M.Bottjer, D. J. 1996. Long-term faunal stasis without evolutionary coordination: Jurassic benthic marine paleocommunities, Western Interior, United States. Geology 24:815818.2.3.CO;2>CrossRefGoogle Scholar
Thackeray, J. F. 1990. Rates of extinction in marine invertebrates: further comparison between background and mass extinction. Paleobiology 16:2224.CrossRefGoogle Scholar
Van Valen, L. M. 1984. A resetting of Phanerozoic community evolution. Nature 307:5052.CrossRefGoogle Scholar
Veevers, J. J.Powell, C. M. 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America Bulletin 98:475487.2.0.CO;2>CrossRefGoogle Scholar
Vrba, E. S. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81:229236.Google Scholar
Wagner, R. H.Winkler-Prins, C. F. 1997. Carboniferous chronostratigraphy: Quo vadis? Pp. 187196in Podemski, M.Dybova, S.-Jachowicz, Jaworowski, K.Jureczka, J.Wagner, R., eds. Proceedings of the Thirteenth International Congress on the Carboniferous and Permian. Prace Panstwowego Instytutu Geologicznego No. 158.Google Scholar
West, R. R.Archer, A. W.Miller, K. B. 1997. The role of climate in stratigraphic patterns exhibited by late Paleozoic rocks exposed in Kansas. Palaeogeography, Palaeoclimatology, Palaeoecology 128:116.CrossRefGoogle Scholar
Westrop, S. R. 1996. Temporal persistence and stability of Cambrian biofacies: Sunwaptan (Upper Cambrian) trilobites of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 127:3346.CrossRefGoogle Scholar
Westrop, S. R.Cuggy, M. B. 1999. Comparative paleoecology of Cambrian trilobite extinctions. Journal of Paleontology 73:337354.CrossRefGoogle Scholar
Williams, A.Rowell, A. J.Muir, H. M.-Wood, Pitrat, C. W.Schmidt, H.Stehli, F. G.Ager, D. V.Wright, A. D.Elliott, G. F.Amsden, T. W.Rudwick, M. J. S.Hatai, K.Biernat, G.McLaren, D. J.Boucot, A. J.Johnson, J. G.Stanton, R. D.Grant, R. E.Jope, H. M. 1965. Brachiopoda. Part H of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Williams, J. 1937. Pennsylvanian invertebrates faunas of southeastern Kansas. Bulletin of the Kansas Geological Survey No. 24.Google Scholar
Witzke, B. J. 1990. Palaeoclimatic constraints for Palaeozoic palaeolatitudes of Laurentia and Euramerica. Pp. 5773in McKerrow, W. S.Scotese, C. R., eds. Palaeozoic palaeogeography and biogeography. Geological Society of London Memoir 12.Google Scholar
Zeller, D. E. 1968. The stratigraphic succession in Kansas. Bulletin of the Kansas Geological Survey No. 189.Google Scholar
Ziegler, A. M.Hulver, M. L.Rowley, D. B. 1997. Permian world topography and climate. Pp. 111142in Martini, I. P., ed. Late glacial and postglacial environmental changes: Quaternary, Carboniferous-Permian, and Proterozoic. Oxford University Press, New York.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evaluating taxonomic turnover: Pennsylvanian–Permian brachiopods and bivalves of the North American Midcontinent
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Evaluating taxonomic turnover: Pennsylvanian–Permian brachiopods and bivalves of the North American Midcontinent
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Evaluating taxonomic turnover: Pennsylvanian–Permian brachiopods and bivalves of the North American Midcontinent
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *