Skip to main content Accessibility help
Hostname: page-component-6c8bd87754-24rgv Total loading time: 0.431 Render date: 2022-01-17T17:03:14.858Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Climate-averaging of terrestrial faunas: an example from the Plio-Pleistocene of South Africa

Published online by Cambridge University Press:  08 April 2016

Philip J. Hopley
Department of Geography, University College London, Pearson Building, Gower Street, London, WC1E 6BT, United Kingdom. E-mail:
Mark A. Maslin
Department of Geography, University College London, Pearson Building, Gower Street, London, WC1E 6BT, United Kingdom. E-mail:


Fundamental to the interpretation of bone-bearing faunal deposits is an understanding of the taphonomic processes that have modified the once living fossil community. An often neglected source of bias is that of climate-averaging, which occurs when the duration of bone accumulation exceeds the duration of an individual climatic episode. Tropical and subtropical climate change is dominated by precessional cyclicity (~21,000 year cycle), which controls monsoon rainfall intensity and thus plant communities over time. Under a climate-averaging scenario, the paleoecological characteristics of a faunal deposit represent an amalgamation of more than one phase of the precessional cycle. We investigate the degree of climate-averaging in Plio-Pleistocene bone breccias from South Africa by comparing stable isotope measurements of fossil enamel with the evidence from high-resolution speleothem paleoclimate proxies. We conclude that each of the four faunal assemblages studied are climate-averaged, having formed over a time period in excess of one-third of a precessional cycle (~7000 years). This has implications for the reconstruction of hominin paleoenvironments and estimates of Plio-Pleistocene biodiversity. We hypothesize that climate-averaging may be a common feature of tropical terrestrial vertebrate assemblages throughout the Cenozoic and Mesozoic.

Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ashley, G. 2007. Orbital rhythms, monsoons, and playa lake response, Olduvai Basin, equatorial East Africa (ca. 1.85–1.74 Ma). Geology 35:10911094.CrossRefGoogle Scholar
Balme, G., Hunter, L., and Slotow, R. 2007. Feeding habitat selection by hunting leopards Panthera pardus in a woodland savanna: prey catchability versus abundance. Animal Behaviour 74:589598.CrossRefGoogle Scholar
Baiter, V., Blichert-Toft, J., Braga, J., Telouk, P., Thackeray, F., and Albarède, F. 2008. U-Pb dating of fossil enamel from the Swartkrans Pleistocene hominid site, South Africa. Earth and Planetary Science Letters 267:236246.Google Scholar
Beckmann, B., Flogel, S., Hofmann, P., Schulz, M., and Wagner, T. 2005. Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response. Nature 437:241244.CrossRefGoogle ScholarPubMed
Behrensmeyer, A. K. 2006. Climate change and human evolution. Science 311:476478.CrossRefGoogle ScholarPubMed
Behrensmeyer, A. K., Kidwell, S. M., and Gastaldo, R. A. 2000. Taphonomy and paleobiology. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):103147.CrossRefGoogle Scholar
Behrensmeyer, A. K., Bobe, R., and Alemseged, Z. 2007. Approaches to the analysis of faunal change during the East African Pliocene. Pp. 124 in Bobe, R., Alemseged, Z., and Behrensmeyer, A. K., eds. Hominin environments in the East African Pliocene: an assessment of the faunal evidence. Springer, Berlin.Google Scholar
Blackwell, B. A. 1994. Problems associated with reworked teeth in Electron-Spin-Resonance (ESR) dating. Quaternary Science Reviews 13:651660.CrossRefGoogle Scholar
Bobe, R., Behrensmeyer, A. K., and Chapman, R. E. 2002. Faunal change, environmental variability and late Pliocene hominin evolution. Journal of Human Evolution 42:475497.CrossRefGoogle ScholarPubMed
Bodendorfer, T., Hoppe-Dominik, B., Fischer, F., Linsenmair, K. E. 2006. Prey of the leopard (Panthera pardus) and the lion (Panthera leo) in the Comoe and Marahoue National Parks, Cote d'Ivoire. West Africa. Mammalia 70:231246.Google Scholar
Bothma, J. Du P., van Rooyen, N., and van Rooyen, M. W. 2004. Using diet and plant resources to set wildlife stocking densities in African savannas. Wildlife Society Bulletin 32:840851.CrossRefGoogle Scholar
Boydston, E. E., Kapheim, K. M., Szykman, M., and Holekamp, K. E. 2003. Individual variation in space use by female spotted hyenas. Journal of Mammalogy 84:10061018.CrossRefGoogle Scholar
Brain, C. K. 1970. New finds at the Swartkrans australopithecine site. Nature 225:11121119.CrossRefGoogle ScholarPubMed
Brain, C. K. 1981. The hunters or the hunted? An introduction to African cave taphonomy. University of Chicago Press, Chicago.Google Scholar
Brain, C. K. ed. 1993. Swartkrans: a cave's chronicle of early man. Transvaal Museum Monograph 8.Google Scholar
Brain, C. K. ed. 1995. The influence of climatic changes on the completeness of the early hominid record in Southern African caves, with particular reference to Swartkrans. Pp. 451458 in Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, Conn. Google Scholar
Bump, J. K., Fox-Dobbs, K., Bada, J. L., Koch, P. L., Peterson, R. O., and Vucetich, J. A. 2007. Stable isotopes, ecological integration and environmental change: wolves record atmospheric carbon isotope trend better than tree rings. Proceedings of the Royal Society of London B 274:24712480.CrossRefGoogle ScholarPubMed
Clement, A. C., Hall, A., and Broccoli, A. J. 2004. The importance of precessional signals in the tropical climate. Climate Dynamics 22:327341.CrossRefGoogle Scholar
Codron, D., Codron, J., Lee-Thorp, J., Sponheimer, M., de Ruiter, D., and Brink, J. 2007. Stable isotope characterization of mammalian predator-prey relationships in a South African savanna. European Journal of Wildlife Research 53:161170.CrossRefGoogle Scholar
Cooper, A. B., Pettorelli, N., and Durant, S. M. 2007. Large carnivore menus: factors affecting hunting decisions by cheetahs in the Serengeti. Animal Behaviour 73:651659.CrossRefGoogle Scholar
Cruz, F. W. Jr., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso, A. O., Ferrari, J. A., Silva Dias, P. L., and Viana, O. Jr. 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434:6366.CrossRefGoogle ScholarPubMed
Curnoe, D., and Tobias, P. V. 2006. Description, new reconstruction, comparative anatomy, and classification of the Sterkfontein Stw 53 cranium, with discussions about the taxonomy of other southern African early Homo remains. Journal of Human Evolution 50:3677.CrossRefGoogle ScholarPubMed
de Ruiter, D. J. 2004. Relative abundance, skeletal part representation and accumulating agents of macromammals at Swartkrans. Pp. 265278 in Brain, C. K., ed. Swartkrans: a cave's chronicle of early man. Transvaal Museum, Pretoria.Google Scholar
de Ruiter, P. C., Wolters, V., Moore, J. C., and Winemiller, K. O. 2005. Food web ecology: playing Jenga and beyond. Science 309:6871.CrossRefGoogle ScholarPubMed
Grine, F. E. 2005. Early Homo at Swartkrans, South Africa: a review of the evidence and an evaluation of recently proposed morphs. South African Journal of Science 101:4352.Google Scholar
Hayward, M. W. 2006. Prey preferences of the spotted hyaena (Crocuta crocuta) and degree of dietary overlap with the lion (Panthera leo). Journal of Zoology 270:606614.CrossRefGoogle Scholar
Hayward, M. W., and Kerley, G. I. H. 2005. Prey preferences of the lion (Panthera leo). Journal of Zoology 267:309322.CrossRefGoogle Scholar
Hayward, M. W., Henschel, P., O'Brien, J., Hofmeyr, M., Balme, G., and Kerley, G. I. H. 2006a. Prey preferences of the leopard (Panthera pardus). Journal of Zoology 270:298313.CrossRefGoogle Scholar
Hayward, M. W., Hofmeyr, M., O'Brien, J., and Kerley, G. I. H. 2006b. Prey preferences of the cheetah (Acinonyx jubatus) (Felidae : Carnivora): morphological limitations or the need to capture rapidly consumable prey before kleptoparasites arrive? Journal of Zoology 270:615627.CrossRefGoogle Scholar
Hayward, M. W., O'Brien, J., Hofmeyr, M., and Kerley, G. I. H. 2007. Testing predictions of the prey of lion derived from modeled prey preferences. Journal of Wildlife Management 71:15671575.CrossRefGoogle Scholar
Hillson, S. 1986. Teeth (Cambridge Manuals in Archaeology). Cambridge University Press, Cambridge.Google Scholar
Herries, A. I. R., Curnoe, D., and Adams, J. W. 2009. A multi-disciplinary seriation of early Homo and Paranthropus bearing palaeocaves in southern Africa. Quaternary International 202:1428.CrossRefGoogle Scholar
Hopley, P. J., Latham, A. G., and Marshall, J. D. 2006. Palaeoenvironments and palaeodiets of mid-Pliocene micromammals from Makapansgat Limeworks, South Africa: a stable isotope and dental microwear approach. Palaeogeography, Paleoclimatology, Palaeoecology 233:235251.CrossRefGoogle Scholar
Hopley, P. J., Weedon, G. P., Marshall, J. D., Herries, A. I. R., Latham, A. G., and Kuykendall, K. L. 2007. High- and low-latitude orbital forcing of early hominin habitats in South Africa. Earth and Planetary Science Letters 256:419432.CrossRefGoogle Scholar
Kidwell, S. M., and Behrensmeyer, A. K. 1993. Taphonomic approaches to time resolution in fossil assemblages. Short Courses in Paleontology 6. Paleontological Society, Knoxville, Tenn. Google Scholar
Kingston, J. D. 2007. Shifting adaptive landscapes: Progress and challenges in reconstructing early hominid environments. Yearbook of Physical Anthropology 134(Suppl. 45):2058.CrossRefGoogle Scholar
Kingston, J. D., Deino, A. L., Edgar, R. K., and Hill, A. 2007. Astronomically forced climate change in the Kenyan Rift Valley 2.7–2.55 Ma: implications for the evolution of early hominin ecosystems. Journal of Human Evolution 53:487503.CrossRefGoogle ScholarPubMed
Kovarovic, K., and Andrews, P. 2007. Bovid postcranial ecomorphological survey of the Laetoli paleoenvironment. Journal of Human Evolution 52:663680.CrossRefGoogle ScholarPubMed
Kuman, K., and Clarke, R. J. 2000. Stratigraphy, artefact industries and hominid associations for Sterkfontein, Member 5. Journal of Human Evolution 38:827847.CrossRefGoogle ScholarPubMed
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428:261285.CrossRefGoogle Scholar
Lee–Thorp, J. A., van der Merwe, N. J., and Brain, C. K. 1989. Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. Journal of Human Evolution 18:183190.CrossRefGoogle Scholar
Lee-Thorp, J., Manning, L., and Sponheimer, M. 1997. Problems and prospects for carbon isotope analysis of very small samples of fossil tooth enamel. Bulletin de la Société Géologique de France 168:767773.Google Scholar
Lee-Thorp, J. A., Thackeray, J. F., and van der Merwe, N. 2000. The hunters and the hunted revisited. Journal of Human Evolution 39:565576.CrossRefGoogle ScholarPubMed
Lee-Thorp, J. A., Sponheimer, M., and Luyt, J. 2007. Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. Journal of Human Evolution 53:595601.CrossRefGoogle ScholarPubMed
Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., and Ehleringer, J. R. 2006. A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences USA 103:1120111205.CrossRefGoogle ScholarPubMed
Lockwood, C. A., and Tobias, P. V. 2002. Morphology and affinities of new hominin cranial remains from Member 4 of the Sterkfontein Formation, Gauteng Province, South Africa. Journal of Human Evolution 42:389450.CrossRefGoogle ScholarPubMed
Luyt, J. 2001. Revisiting the palaeoenvironments of the South African hominid-bearing Plio-Pleistocene sites: new isotopic evidence from Sterkfontein. . University of Cape Town, Cape Town.Google Scholar
Luyt, C. J., and Lee-Thorp, J. A. 2003. Carbon isotope ratios of Sterkfontein fossils indicate a marked shift to open environments c. 1.7 Myr ago. South African Journal of Science 99:271273.Google Scholar
Maslin, M. A., and Christensen, B. 2007. Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume. Journal of Human Evolution 53:443464.CrossRefGoogle ScholarPubMed
Melville, H. I. A. S., Cauldwell, A. E., and Bothma, J. Du P. 1999. A comparison of two techniques for estimating tree canopy volume. South African Journal of Wildlife Research 29:15.Google Scholar
O'Regan, H. J., and Reynolds, S. C. 2009. An ecological reassessment of the southern African carnivore guild: a case study from Member 4, Sterkfontein, South Africa. Journal of Human Evolution 57:212222.CrossRefGoogle ScholarPubMed
Partridge, T. C., and Watt, I. B. 1991. The stratigraphy of the Sterkfontein hominid deposit and its relationship to the underground cave system. Palaeontologia Africana 28:3540.Google Scholar
Partridge, T. C., deMenocal, P. B., Lorentz, S., Paiker, M. J., and Vogel, J. C. 1997. Orbital forcing of climate over South Africa: a 200,000-year rainfall record from the Pretoria Saltpan. Quaternary Science Reviews 16:11251133.CrossRefGoogle Scholar
Pickering, T. R. 2006. Subsistence behaviour of South African Pleistocene hominids. South African Journal of Science 102:205210.Google Scholar
Pickering, T. R., Clarke, R. J., and Moggi-Cecchi, J. 2004a. Role of carnivores in the accumulation of the Sterkfontein Member 4 hominid assemblage: a taphonomic reassessment of the complete hominid fossil sample (1936–1999). American Journal of Physical Anthropology 125:115.CrossRefGoogle Scholar
Pickering, T. R., Dominguez-Rodrigo, M., Egeland, C. P., and Brain, C. K. 2004b. Beyond leopards: tooth marks and the contribution of multiple carnivore taxa to the accumulation of the Swartkrans Member 3 fossil assemblage. Journal of Human Evolution 46:595604.CrossRefGoogle Scholar
Pickering, T. R., Egeland, C. P., Domínguez-Rodrigo, M., Brain, C. K., and Schnell, A. G. 2008. Testing the “shift in the balance of power” hypothesis at Swartkrans, South Africa: hominid cave use and subsistence behavior in the Early Pleistocene. Journal of Anthropological Archaeology 27:3045.CrossRefGoogle Scholar
Plummer, T. W., Bishop, L. C., and Hertel, F. 2008. Habitat preference of extant African bovids based on astragalus morphology: operationalizing ecomorphology for palaeoenvironmental reconstruction. Journal of Archaeological Science 35:30163027.CrossRefGoogle Scholar
Radloff, F. G. T., and Du Toit, J. T. 2004. Large predators and their prey in a southern African savanna: a predator's size determines its prey size range. Journal of Animal Ecology 73:410423.CrossRefGoogle Scholar
Reed, K. E. 1997. Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution 32:289322.CrossRefGoogle ScholarPubMed
Reed, K. E. 1998. Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology 24:384408.Google Scholar
Reed, K. E. 2002. The use of paleocommunity and taphonomic studies in reconstructing primate behavior. Pp. 217259 in Plavcan, J. M., Kay, R. F., Jungers, W. L., and van Shaik, C. P. Reconstructing behavior in the primate fossil record. Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
Schwarcz, H. P., Grun, R., and Tobias, P. V. 1994. ESR dating studies of the australopithecine site of Sterkfontein, South Africa. Journal of Human Evolution 26:175181.CrossRefGoogle Scholar
Sillen, A., and Lee-Thorp, J. A. 1994. Trace element and isotopic aspects of predator-prey relationships in terrestrial foodwebs. Palaeogeography, Paleoclimatology, Palaeoecology 107:243255.CrossRefGoogle Scholar
Soligo, C., and Andrews, P. 2005. Taphonomic bias, taxonomic bias and historical non-equivalence of faunal structure in early hominin localities. Journal of Human Evolution 49:206229.CrossRefGoogle ScholarPubMed
Spong, G. 2002. Space use in lions, Panthera leo, in the Selous Game Reserve: social and ecological factors. Behavioral Ecology and Sociobiology 52:303307.CrossRefGoogle Scholar
Sponheimer, M., and Lee-Thorp, J. A. 1999. Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science 26:723728.CrossRefGoogle Scholar
Sponheimer, M., Reed, K. E., and Lee-Thorp, J. A. 1999. Combining isotopic and ecomorphological data to refine bovid paleodietary reconstruction: a case study from the Makapansgat Limeworks hominin locality. Journal of Human Evolution 36:705718.CrossRefGoogle ScholarPubMed
Sponheimer, M., Lee-Thorp, J., de Ruiter, D., Codron, D., Codron, J., Baugh, A. T., and Thackeray, F. 2005. Hominins, sedges, and termites: new carbon isotope data from the Sterkfontein valley and Kruger National Park. Journal of Human Evolution 48:301312.CrossRefGoogle ScholarPubMed
Spoor, F., Leakey, M. G., Gathogo, P. N., Brown, F. H., Anton, S. C., McDougall, I., Kiarie, C., Manthi, F. K., and Leakey, L. N. 2007. Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya. Nature 448:688691.CrossRefGoogle Scholar
Stanford, C. 2006. The behavioral ecology of sympatric African apes: implications for understanding fossil hominoid ecology. Primates 47:91101.CrossRefGoogle ScholarPubMed
Summers, R. W., and Neville, M. K. 1978. On the sympatry of early hominids. American Anthropologist 80:657660.CrossRefGoogle Scholar
Susman, R. L., de Ruiter, D., and Brain, C. K. 2001. Recently identified postcranial remains of Paranthropus and early Homo from Swartkrans Cave, South Africa. Journal of Human Evolution 41:607629.CrossRefGoogle ScholarPubMed
Trauth, M. H., Deino, A. L., Bergner, A. G. N., and Strecker, M. R. 2003. East African climate change and orbital forcing during the last 175 kyr BP. Earth and Planetary Science Letters 206:297313.CrossRefGoogle Scholar
Vrba, E. S. 1980. The significance of bovid remains as indicators of environment and predation patterns. Pp. 247271 in Behrensmeyer, A. K. and Hill, A. P., eds. Fossils in the making: vertebrate taphonomy and paleoecology. University of Chicago Press, Chicago.Google Scholar
Vrba, E. S. 1995. On the connections between paleoclimate and evolution. Pp. 2445 in Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, Conn. Google Scholar
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Climate-averaging of terrestrial faunas: an example from the Plio-Pleistocene of South Africa
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Climate-averaging of terrestrial faunas: an example from the Plio-Pleistocene of South Africa
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Climate-averaging of terrestrial faunas: an example from the Plio-Pleistocene of South Africa
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *