Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T08:24:59.691Z Has data issue: false hasContentIssue false

Climate change and faunal turnover: testing the mechanics of the turnover-pulse hypothesis with South African fossil data

Published online by Cambridge University Press:  22 August 2013

Abstract

The turnover-pulse hypothesis (TPH) makes explicit predictions concerning the potential responses of species to climate change, which is considered to be a major cause of faunal turnover (extinction, speciation, and migration). Previous studies have tested the TPH primarily by examining temporal correlations between turnover pulses and climatic events. It is rarely possible to dissect such correlations and observe turnover as it is occurring or to predict how different lineages will respond to climate change. Thus, whether climate change drives faunal turnover in the manner predicted by the TPH remains unclear. In this study, we test the underlying mechanics of the TPH using well-dated Quaternary ungulate records from southern Africa's Cape Floristic Region (CFR). Changes in sea level, vegetation, and topographic barriers across glacial-interglacial transitions in southern Africa caused shifts in habitat size and configuration, allowing us to generate specific predictions concerning the responses of ungulates characterized by different feeding habits and habitat preferences. Examples from the CFR show how climatically forced vegetation change and allopatry can drive turnover resulting from extinction and migration. Evidence for speciation is lacking, suggesting either that climate change does not cause speciation in these circumstances or that the evolutionary outcome of turnover is contingent on the nature and rate of climate change. Migrations and extinctions are observed in the CFR fossil record over geologically short time intervals, on the order of Milankovitch-scale climate oscillations. We propose that such climate oscillations could drive a steady and moderate level of faunal turnover over 104-year time scales, which would not be resolved in paleontological records spanning 105 years and longer. A turnover pulse, which is a marked increase in turnover relative to previous and subsequent time periods, requires additional, temporally constrained climatic forcing or other processes that could accelerate evolutionary change, perhaps mediated through biotic interactions.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.CrossRefGoogle Scholar
Alroy, J. 1998. Equilibrial diversity dynamics in North American mammals. Pp. 232287inMcKinney, M. L. and Drake, J., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J., Koch, P. L., and Zachos, J. C. 2000. Global climate change and North American mammalian evolution. Paleobiology 26:259288.CrossRefGoogle Scholar
Avery, D. M. 1982. Micromammals as palaeoenvironmental indicators and an interpretation of the late Quaternary in the southern Cape Province, South Africa. Annals of the South African Museum 85:183374.Google Scholar
Badgley, C., Barry, J. C., Morgan, M. E., Nelson, S. V., Behrensmeyer, A. K., Cerling, T. E., and Pilbeam, D. 2008. Ecological changes in Miocene mammalian record show impact of prolonged climate forcing. Proceedings of the National Academy of Sciences USA 105:1214512149.CrossRefGoogle Scholar
Bar-Matthews, M., Marean, C. W., Jacobs, Z., Karkanas, P., Fisher, E. C., Herries, A. I. R., Brown, K., Williams, H. M., Bernatchez, J., Ayalon, A., and Nilssen, P. J. 2010. A high resolution and continuous isotopic speleothem record of paleoclimate and paleoenvironment from 90 to 53 ka from Pinnacle Point on the south coast of South Africa. Quaternary Science Reviews 29:21312145.CrossRefGoogle Scholar
Barnosky, A. D. 2001. Distinguishing the effects of the red queen and court jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology 21:172185.CrossRefGoogle Scholar
Barnosky, A. D. 2005. Effects of Quaternary climatic change on speciation in mammals. Journal of Mammalian Evolution 12:247264.CrossRefGoogle Scholar
Barry, J. C., Morgan, M. E., Flynn, L. J., Pilbeam, D., Behrensmeyer, A. K., Raza, S. M., Khan, I. A., Badgley, C., Hicks, J., and Kelley, J. 2002. Faunal and environmental change in the late Miocene Siwaliks of Northern Pakistan. Paleobiology Memoir 3. Paleobiology 28 (Suppl. to No. 2).CrossRefGoogle Scholar
Behrensmeyer, A. K. 2006. Climate change and human evolution. Science 311:476478.CrossRefGoogle ScholarPubMed
Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.D., and Wing, S. L., eds. 1992. Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago.Google Scholar
Behrensmeyer, A. K., Todd, N. E., Potts, R., and McBrinn, G. E. 1997. Late Pliocene faunal turnover in the Turkana Basin, Kenya and Ethiopia. Science 278:15891594.CrossRefGoogle ScholarPubMed
Benton, M. J. 2009. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728732.CrossRefGoogle ScholarPubMed
Blois, J. L., and Hadly, E. A. 2009. Mammalian responses to Cenozoic climatic change. Annual Review of Earth and Planetary Sciences 37:181208.CrossRefGoogle Scholar
Bobe, R. 2006. The evolution of arid ecosystems in eastern Africa. Journal of Arid Environments 66:564584.CrossRefGoogle Scholar
Bobe, R., and Behrensmeyer, A. K. 2004. The expansion of grassland ecosystems in African in relation to mammalian evolution and the origin of the genus Homo. Paleogeography, Paleoclimatology, Paleoecology 207:399420.CrossRefGoogle Scholar
Bobe, R., Behrensmeyer, A. K., and Chapman, R. E. 2002. Faunal change, environmental variability and late Pliocene hominin evolution. Journal of Human Evolution 42:475497.CrossRefGoogle ScholarPubMed
Boshoff, A. F., and Kerley, G. I. H. 2001. Potential distributions of the medium- to large-sized mammals in the Cape Floristic Region, based on historical accounts and habitat requirements. African Zoology 36:245273.CrossRefGoogle Scholar
Brink, J. S. 1999. Preliminary report on a caprine from the Cape mountains, South Africa. Archaeozoologia 10:1126.Google Scholar
Chase, B. M., and Meadows, M. E. 2007. Late Quaternary dynamics of southern Africa's winter rainfall zone. Earth-Science Reviews 84:103138.CrossRefGoogle Scholar
Codron, D., Brink, J. S., Rossouw, L., and Clauss, M. 2008. The evolution of ecological specialization in southern African ungulates: competition or physical environmental turnover. Oikos 117:344353.CrossRefGoogle Scholar
Compton, J. S. 2011. Pleistocene sea-level fluctuations and human evolution on the southern coastal plain of South Africa. Quaternary Science Reviews 30:506527.CrossRefGoogle Scholar
Cowling, R. M., Cartwright, C. R., Parkington, J. E., and Allsopp, J. C. 1999. Fossil wood charcoal assemblages from Elands Bay Cave, South Africa: implications for Late Quaternary vegetation and climates in the winter-rainfall fynbos biome. Journal of Biogeography 26:367378.CrossRefGoogle Scholar
Cruz-Uribe, K., Klein, R. G., Avery, G., Avery, M., Halkett, D., Hart, T., Milo, R. G., Sampson, C. G., and Volman, T. P. 2003. Excavation of buried Late Acheulean (Mid-Quaternary) land surfaces at Duinefontein 2, Western Cape Province, South Africa. Journal of Archaeological Science 30:559575.CrossRefGoogle Scholar
DeMenocal, P. B. 2004. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth and Planetary Science Letters 220:324.CrossRefGoogle Scholar
Dynesius, M., and Jansson, R. 2000. Evolutionary consequences of changes in species' geographic distribution driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences USA 97:91159120.CrossRefGoogle ScholarPubMed
Essop, M. F., Harley, E. H., Lloyd, P. H., and van Hensbergen, H. J. 1991. Estimation of the genetic distance between bontebok and blesbok using mitochondrial DNA. South African Journal of Science 87:271273.Google Scholar
Faith, J. T. 2011a. Late Quaternary dietary shifts of the Cape grysbok (Raphicerus melanotis) in southern Africa. Quaternary Research 75:159165.CrossRefGoogle Scholar
Faith, J. T. 2011b. Ungulate community richness, grazer extinctions, and human subsistence behavior in southern Africa's Cape Floral Region. Palaeogeography, Palaeoclimatology, Palaeoecology 306:219227.CrossRefGoogle Scholar
Faith, J. T. 2012a. Conservation implications of fossil roan antelope (Hippotragus equinus) in southern Africa's Cape Floristic Region. Pp. 239251inLouys, J., ed. Paleontology in ecology and conservation. Springer, Heidelberg.CrossRefGoogle Scholar
Faith, J. T. 2012b. Palaeozoological insights into management options for a threatened mammal: southern Africa's Cape mountain zebra (Equus zebra zebra). Diversity and Distributions 18:438447.CrossRefGoogle Scholar
Faith, J. T. 2013. Ungulate diversity and precipitation history since the Last Glacial Maximum in the Western Cape, South Africa. Quaternary Science Reviews 69:191199.CrossRefGoogle Scholar
Faith, J. T., Potts, R., Plummer, T. W., Bishop, L. C., Marean, C. W., and Tryon, C. A. 2012. New perspectives on middle Pleistocene change in the large mammal faunas of East Africa: Damaliscus hypsodon sp. nov. (Mammalia, Artiodactyla) from Lainyamok, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology 361–362:8493.CrossRefGoogle Scholar
Faith, J. T., and Thompson, J. C.In press. Fossil evidence for seasonal calving and migration of extinct blue antelope (Hippotragus leucophaeus) in southern Africa. Journal of Biogeography.Google Scholar
Fisher, E. C., Bar-Matthews, M., Jerardino, A., and Marean, C. W. 2010. Middle and Late Pleistocene paleoscape modeling along the southern coast of South Africa. Quaternary Science Reviews 29:13821398.CrossRefGoogle Scholar
Frost, S. R. 2007. African Pliocene and Pleistocene cercopithecid evolution and global climate change. Pp. 5176inBobe, R., Alemseged, Z., and Behrensmeyer, A. K., eds. Hominin environments in the East African Pliocene: an assessment of the faunal evidence. Springer, Dordrecht.CrossRefGoogle Scholar
Grant, P. R., and Grant, B. R. 2008. How and why species multiply: the radation of Darwin's finches. Princeton University Press, Princeton, N.J.Google Scholar
Greenacre, M. J., and Vrba, E. S. 1984. Graphical display and interpretation of antelope census data in African wildlife areas, using correspondence analysis. Ecology 65:984997.CrossRefGoogle Scholar
Harris, J. M., and Cerling, T. E. 2002. Dietary adaptations of extant and Neogene African suids. Journal of Zoology 256:4554.CrossRefGoogle Scholar
Henshilwood, C. S., Sealy, J. C., Yates, R., Cruz-Uribe, K., Goldberg, P., Grine, F. E., Klein, R. G., Poggenpoel, C., van Niekerk, K., and Watts, I. 2001. Blombos Cave, Southern Cape, South Africa: preliminary report on the 1992–1999 excavations of the Middle Stone Age levels. Journal of Archaeological Science 28:421448.CrossRefGoogle Scholar
Hill, A. 1987. Causes of perceived faunal change in the later Neogene of East Africa. Journal of Human Evolution 16:583596.CrossRefGoogle Scholar
Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, N.J.Google Scholar
Inskeep, R. R. 1987. Nelson Bay Cave, Cape Province, South Africa: the Holocene levels. BAR International Series 357. Archaeopress, Oxford.CrossRefGoogle Scholar
Jablonski, D. 2008. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Ecology 62:715739.Google ScholarPubMed
Jerardino, A. 1998. Excavations at Pancho's Kitchen Midden, Western Cape Coast, South Africa: further observations into the Megamidden Period. South African Archaeological Bulletin 53:1625.CrossRefGoogle Scholar
Jerardino, A., and Yates, R. 1996. Preliminary results from excavations at Steenbokfontein Cave: implications for past and future research. South African Archaeological Bulletin 51:716.CrossRefGoogle Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W. 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793796.CrossRefGoogle ScholarPubMed
Kerley, G. I. H., Sims-Castley, R., Boshoff, A. F., and Cowling, R. M. 2009. Extinction of the blue antelope Hippotragus leucophaeus: modeling predicts non-viable global population size as the primary driver. Biodiversity and Conservation 18:32353242.CrossRefGoogle Scholar
Kerley, G. I. H., Landman, M., and de Beer, S. 2010. How do small browsers respond to resource changes? Dietary response of the Cape grysbok to clearing alien Acacias. Functional Ecology 24:670675.CrossRefGoogle Scholar
Klein, R. G. 1974. On the taxonomic status, distribution and ecology of the blue antelope, Hippotragus leucophaeus (Pallas, 1766). Annals of the South African Museum 65:99143.Google Scholar
Klein, R. G. 1976. The fossil history of Raphicerus H. Smith, 1827 (Bovidae, Mammalia) in the Cape Biotic Zone. Annals of the South African Museum 71:169191.Google Scholar
Klein, R. G. 1980. Environmental and ecological implications of large mammals from Upper Pleistocene and Holocene sites in southern Africa. Annals of the South African Museum 81:223283.Google Scholar
Klein, R. G. 1983. Palaeoenvironmental implications of Quaternary large mammals in the fynbos region. InDeacon, H. J., Hendey, Q. B., and Lambrechts, J. J. N., eds. Fynbos palaeoecology: a preliminary synthesis. South African National Scientific Programmes Report 75:116–138. Mills Litho, Cape Town.Google Scholar
Klein, R. G. 1994. The long-horned African buffalo (Pelorovis antiquus) is an extinct species. Journal of Archaeological Science 21:725733.CrossRefGoogle Scholar
Klein, R. G., and Cruz-Uribe, K. 1987. Large mammal and tortoise bones from Eland's Bay Cave and nearby sites, Western Cape Province, South Africa. Pp. 132163inParkington, J. E. and Hall, M., eds. Papers in the prehistory of the Western Cape, South Africa. BAR International Series 322. Archaeopress, Oxford.Google Scholar
Klein, R. G., and Cruz-Uribe, K. 1989. Faunal evidence for prehistoric herder-forager activities at Kasteelberg, Western Cape Province, South Africa. South African Archaeological Bulletin 44:8297.CrossRefGoogle Scholar
Klein, R. G., and Cruz-Uribe, K. 2000. Middle and Later Stone Age large mammal and tortoise remains from Die Kelders Cave 1, Western Cape Province, South Africa. Journal of Human Evolution 38:169195.CrossRefGoogle ScholarPubMed
Klein, R. G., Avery, G., Cruz-Uribe, K., and Steele, T. E. 2007. The mammalian fauna associated with an archaic hominin skullcap and later Acheulean artifacts at Elandsfontein, Western Cape Providence, South Africa. Journal of Human Evolution 52:164186.CrossRefGoogle Scholar
Koch, P. L., and Barnosky, A. D. 2006. Late Quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37:215250.CrossRefGoogle Scholar
Lee-Thorp, J. A., and Beaumont, P. B. 1995. Vegetation and seasonality shifts during the late Quaternary deduced from 13C/12C ratios of grazers at Equus Cave, South Africa. Quaternary Research 43:426432.CrossRefGoogle Scholar
Lee, R. B. 1972. !Kung spatial organization: an ecological and historical perspective. Human Ecology 1:125147.CrossRefGoogle Scholar
Linder, H. P. 2003. The radiation of the Cape flora, southern Africa. Biological Reviews 78:597638.CrossRefGoogle ScholarPubMed
Marean, C. W. 1992. Implications of late Quaternary mammalian fauna from Lukenya Hill (south-central Kenya) for paleoenvironmental change and faunal extinctions. Quaternary Research 37:239255.CrossRefGoogle Scholar
Marean, C. W. 2010. Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: the Cape Floral kingdom, shellfish, and modern human origins. Journal of Human Evolution 59:425443.CrossRefGoogle ScholarPubMed
Masters, J. C., and Rayner, R. J. 1993. Competition and macroevolution: the ghost of competition yet to come? Biological Journal of the Linnean Society 49:8798.CrossRefGoogle Scholar
Mayr, E. 1942. Systematics and the origin of species. Columbia University Press, New York.Google Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge.CrossRefGoogle Scholar
Mayr, E. 1970. Populations, species, and evolution. Harvard University Press, Cambridge.Google Scholar
McKee, J. K. 2001. Faunal turnover rates and mammalian biodiversity of the late Pliocene and Pleistocene of eastern Africa. Paleobiology 27:500511.2.0.CO;2>CrossRefGoogle Scholar
Mitchell, C. E., Agrawal, A. A., Bever, J. D., Gilbert, G. S., Hufbauer, R. A., Klironomos, J. N., Maron, J. L., Morris, W. F., Parker, I. M., Power, A. G., Seabloom, E. W., Torchin, M. E., and Vázquez, D. P. 2006. Biotic interactions and plant invasions. Ecology Letters 9:726740.CrossRefGoogle ScholarPubMed
Parkington, J. E., Cartwright, C., Cowling, R. M., Baxter, A., and Meadows, M. 2000. Palaeovegetation at the last glacial maximum in the western Cape, South Africa: wood charcoal and pollen evidence from Elands Bay Cave. South African Journal of Science 96:543546.Google Scholar
Plummer, T. W., and Bishop, L. C. 1994. Hominid paleoecology at Olduvai Gorge, Tanzania, as indicated by antelope remains. Journal of Human Evolution 27:4775.CrossRefGoogle Scholar
Potts, R. 1998. Variability selection in hominid evolution. Evolutionary Anthropology 7:8196.3.0.CO;2-A>CrossRefGoogle Scholar
Prothero, D. R. 1999. Does climatic change drive mammalian evolution? GSA Today 9 (9):17.Google Scholar
Prothero, D. R. 2004. Did impacts, volcanic eruptions, or climate change affect mammalian evolution? Palaeogeography, Palaeoclimatology, Palaeoecology 214:283294.CrossRefGoogle Scholar
Prothero, D. R., and Heaton H., T. 1996. Faunal stability during the Early Oligocene climate crash. Palaeogeography, Palaeoclimatology, Palaeoecology 127:257283.CrossRefGoogle Scholar
Radloff, F. G. T. 2008. The ecology of large herbivores native to the coastal lowlands of the Fynbos Biome in the Western Cape, South Africa. Ph.D. dissertation. Stellenbosch University, Stellenbosch, South Africa.Google Scholar
Raia, P., Piras, P., and Kotsakis, T. 2005. Turnover pulse or Red Queen? Evidence from the large mammal communities during the Plio-Pleistocene of Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 221:293312.CrossRefGoogle Scholar
Rebelo, A. G., Boucher, C., Helme, N., Mucina, L., and Rutherford, M. C. 2006. Fynbos biome. Pp. 52219inMucina, L. and Rutherford, M. C., eds. The vegetation of South Africa, Lesotho, and Swaziland. South African National Biodiversity Institute, Pretoria.Google Scholar
Rector, A. L., and Reed, K. E. 2010. Middle and Late Pleistocene faunas of Pinnacle Point and their paleoecological implications. Journal of Human Evolution 59:340357.CrossRefGoogle ScholarPubMed
Rector, A. L., and Verrelli, B. C. 2010. Glacial cycling, large mammal community composition, and trophic adaptations in the Western Cape, South Africa. Journal of Human Evolution 58:90102.CrossRefGoogle ScholarPubMed
Reed, K. E. 1997. Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution 32:289322.CrossRefGoogle ScholarPubMed
Schweitzer, F. R., and Wilson, M. L. 1982. Byneskranskop 1, a late Quaternary living site in the southern Cape Province, South Africa. Annals of the South African Museum 88:1203.Google Scholar
Skead, C. J. 2011. Historical incidence of the larger land mammals in the broader Western and Northern Cape. Centre for African Conservation Ecology, Nelson Mandela Metropolitan University, Port Elizabeth.Google Scholar
Skinner, J. D., and Chimimba, C. T. 2005. The mammals of the Southern African Subregion. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Sutton, M. B., Pickering, T. R., Pickering, R., Brain, C. K., Clarke, R. J., Heaton, J. L., and Kuman, K. 2009. Newly discovered fossil- and artifact-bearing deposits, uranium series ages, and Plio-Pleistocene hominids at Swartkrans Cave, South Africa. Journal of Human Evolution 57:688696.CrossRefGoogle ScholarPubMed
Van Andel, T. H. 1989. Late Pleistocene sea levels and the human exploitation of the shore and shelf of southern South Africa. Journal of Field Archaeology 16:133155.Google Scholar
van Dam, J. A., Aziz, H. Abdul, Sierra, M. A. A., Hilgen, F. J., van den Hoek-Ostende, L. W., Lourens, L. J., Mein, P., van der Meulen, A. J., and Pelaez-Campomanes, P. 2006. Long-period astronomical forcing of mammal turnover. Nature 443:687691.CrossRefGoogle ScholarPubMed
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1:130.Google Scholar
Vogel, J. C., Fuls, A., and Ellis, R. P. 1978. The geographical distribution of Kranz grasses in South Africa. South African Journal of Science 74:209215.Google Scholar
Vrba, E. S. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81:229236.Google Scholar
Vrba, E. S. 1988. Late Pliocene climatic events and hominid evolution. Pp. 405426inGrine, F. E., ed. Evolutionary history of the “robust” australopithecines. Aldine De Gruyter, New York.Google Scholar
Vrba, E. S. 1992. Mammals as a key to evolutionary theory. Journal of Mammalogy 73:128.CrossRefGoogle Scholar
Vrba, E. S. 1993. Turnover-pulses, the Red Queen, and related topics. American Journal of Science 293A:418452.CrossRefGoogle Scholar
Vrba, E. S. 1995. The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. Pp. 385424inVrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, Conn.Google Scholar
Vrba, E. S. 1997. New fossils of Alcelaphini and Caprinae (Bovidae, Mammalia) from Awash, Ethiopia, and phylogenetic analysis of Alcelaphini. Paleontologia Africana 34:127198.Google Scholar
Vrba, E. S. 1999. Habitat theory in relation to the evolution in African Neogene biota and hominids. Pp. 1934inBromage, T. G. and Schrenk, F., eds. African biogeography, climate change, and human evolution. Oxford University Press, New York.CrossRefGoogle Scholar
Werdelin, L., and Lewis, M. E. 2005. Plio-Pleistocene Carnivora of eastern Africa: species richness and turnover patterns. Zoological Journal of the Linnean Society 144:121144.CrossRefGoogle Scholar