Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-8tjh8 Total loading time: 0.57 Render date: 2021-10-25T02:13:00.124Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The Composition of Human Milk as a Model for the Design of Infant Formulas: Recent Findings and Possible Applications

Published online by Cambridge University Press:  14 December 2007

Annemiek C. Goedhart
Affiliation:
Nutricia Research, P. O. Box 1, 2700 MA Zoetermeer, The Netherlands
Jacques G. Bindels
Affiliation:
Nutricia Research, P. O. Box 1, 2700 MA Zoetermeer, The Netherlands
Rights & Permissions[Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1994

References

Aggett, P. J., Barclay, S. & Whitley, J. E. (1989). Iron for the suckling. Acta Paediatrica Scandinavica Suppl. 361, 96102.Google ScholarPubMed
Anderson, R. R. (1992). Variations in major minerals of human milk during the first 5 months of lactation. Nutrition Research 12, 701711.CrossRefGoogle Scholar
Andersson, B., Porras, O., Hanson, L. Å., Lagergård, T. & Svanborg-Edén, C. (1986). Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. Journal of Infectious Diseases 153, 232237.CrossRefGoogle ScholarPubMed
Arthur, J. R., Nicol, F. & Beckett, G. J. (1993). Selenium deficiency, thyroid hormone metabolism, and thyroid hormone deiodinases. American Journal of Clinical Nutrition 57, S236S239.Google ScholarPubMed
Atkinson, S. A., Schnurr, C. M., Donovan, S. M. & Lönnerdal, B. (1989). The non-protein nitrogen components in human milk: biochemistry and potential functional role. In Protein and Non-protein Nitrogen in Human Milk, pp. 117133 [Atkinson, S. A. and Lönnerdal, B., editors]. Boca Raton, FL: CRC Press.Google Scholar
Balmer, S. E., Hanvey, L. S. & Wharton, B. A. (1994). Diet and faecal flora in the newborn: nucleotides. Archives of Disease in Childhood 70, F137F140.CrossRefGoogle ScholarPubMed
Balmer, S. E., Scott, P. H. & Wharton, B. A. (1989). Diet and faecal flora in the newborn: casein and whey proteins. Archives of Disease in Childhood 64, 16781684.CrossRefGoogle ScholarPubMed
Balmer, S. E. & Wharton, B. A. (1989). Diet and faecal flora in the newborn: breast milk and infant formula. Archives of Disease in Childhood 64, 16721677.CrossRefGoogle ScholarPubMed
Balmer, S. E. & Wharton, B. A. (1991). Diet and faecal flora in the newborn: iron. Archives of Disease in Childhood 66, 13901394.CrossRefGoogle ScholarPubMed
Bauchner, H., Leventhal, J. M. & Shapiro, E. D. (1986). Studies of breast-feeding and infections. How good is the evidence? Journal of the American Medical Association 256, 887892.CrossRefGoogle ScholarPubMed
Behne, D., Kyriakopoulos, A., Scheid, S. & Gessner, H. (1991). Effects of chemical form and dosage on the incorporation of selenium into tissue proteins in rats. Journal of Nutrition 121, 806814.Google ScholarPubMed
Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K. & Tomita, M. (1992). Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta 1121, 130136.CrossRefGoogle ScholarPubMed
Bendich, A. (1991). β-Carotene and the immune response. Proceedings of the Nutrition Society 50, 263274.CrossRefGoogle ScholarPubMed
Bernbäck, S., Bläckberg, L. & Hernell, O. (1990). The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase. Journal of Clinical Investigation 85, 12211226.CrossRefGoogle ScholarPubMed
Billeaud, C., Guillet, J. & Sandler, B. (1990). Gastric emptying in infants with or without gastro-oesophageal reflux according to the type of milk. European Journal of Clinical Nutrition 44, 577583.Google ScholarPubMed
Birch, E. E., Birch, D. G., Hoffman, D. R., Hale, L., Everett, M. & Uauy, R. (1993). Breast-feeding and optimal visual development. Journal of Pediatric Ophthalmology and Strabismus 30, 3338.Google ScholarPubMed
Birch, E. E., Birch, D. G., Hoffman, D. R. & Uauy, R. (1992). Dietary essential fatty acid supply and visual acuity development. Investigative Ophthalmology and Visual Science 33, 32423253.Google ScholarPubMed
Böck, A., Forchhammer, K., Heider, J., Leinfelder, W., Sawers, G., Veprek, B. & Zinoni, F. (1991). Selenocysteine: the 21st amino acid. Molecular Microbiology 5, 515520.CrossRefGoogle ScholarPubMed
Boesman-Finkelstein, M. & Finkelstein, R. A. (1991). Bovine lactogenic immunity against pediatric enteropathogens. In Immunology of Milk and the Neonate, pp. 361367. [Mestecky, J., Blair, C. and Ogra, P. L., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Bougle, D., Bureau, F., Foucault, P., Duhamel, J.-F., Muller, G. & Drosdowsky, M. (1988). Molybdenum content of term and preterm human milk during the first 2 months of lactation. American Journal of Clinical Nutrition 48, 652654.Google ScholarPubMed
Bradley, C. K., Hillman, L., Sherman, A. R., Leedy, D. & Cordano, A. (1993). Evaluation of two iron-fortified, milk-based formulas during infancy. Pediatrics 91, 908914.Google ScholarPubMed
British Nutrition Foundation. (1992). Unsaturated Fatty Acids. Nutritional and Physiological Significance. London: Chapman & Hall.Google ScholarPubMed
Bromberger, P. & Hallman, M. (1986). Myoinositol in small preterm infants: relationship between intake and serum concentration. Journal of Pediatric Gastroenterology and Nutrition 5, 455458.CrossRefGoogle ScholarPubMed
Brooke, O. G. (1985). Absorption of lard by infants. Human Nutrition: Applied Nutrition 39A, 221223.Google Scholar
Brunser, O., Espinoza, J., Araya, M., Cruchet, S. & Gil, A. (1994). Effect of dietary nucleotide supplementation on diarrhoeal disease in infants. Acta Paediatrica 83, 188191.CrossRefGoogle ScholarPubMed
Brunser, O., Espinoza, J., Figueroa, G., Araya, M., Spencer, E., Hilpert, H., Link-Amster, H. & Brussow, H. (1992). Field trial of an infant formula containing anti-rotavirus and anti-Escherichia coli milk antibodies from hyperimmunized cows. Journal of Pediatric Gastroenterology and Nutrition 15, 6372.CrossRefGoogle ScholarPubMed
Bullen, C. L. & Willis, A. T. (1971). Resistance of the breast-fed infant to gastroenteritis. British Medical Journal 111, 338343.CrossRefGoogle Scholar
Bustamante, S. A., Sanches, N., Crosier, J., Miranda, D., Colombo, G. & Miller, M. J. S. (1994). Dietary nucleotides: effects on the gastrointestinal system in swine. Journal of Nutrition 124, 149S156S.Google ScholarPubMed
Butte, N. F., Wong, W. W., Ferlic, L., O'Brian Smith, E., Klein, P. D. & Garza, C. (1990). Energy expenditure and deposition of breast-fed and formula-fed infants during early infancy. Pediatric Research 28, 631640.CrossRefGoogle ScholarPubMed
Calvo, E. B., Galindo, A. C. & Aspres, N. B. (1992). Iron status in exclusively breast-fed infants. Pediatrics 90, 375379.Google ScholarPubMed
Carlson, S. E. (1985 a). Human milk nonprotein nitrogen: occurrence and possible functions. Advances in Pediatrics 32, 4370.Google ScholarPubMed
Carlson, S. E. (1985 b). N-Acetylneuraminic acid concentrations in human milk oligosaccharides and glycoproteins during lactation. American Journal of Clinical Nutrition 41, 720726.Google ScholarPubMed
Carlson, S. E., Cooke, R. J., Rhodes, P. G., Peeples, J. M., Werkman, S. H. & Tolley, E. A. (1991). Long-term feeding of formulas high in linolenic acid and marine oil to very low birth weight infants: phospholipid fatty acids. Pediatric Research 30, 404412.CrossRefGoogle ScholarPubMed
Carlson, S. E., Cooke, R. J., Werkman, S. H. & Tolley, E. A. (1992 b). First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula. Lipids 27, 901907.CrossRefGoogle ScholarPubMed
Carlson, S. E., De Voe, P. W. & Barness, L. A. (1982). Effect of infant diets with different polyunsaturated to saturated fat ratios on circulating high-density lipoproteins. Journal of Pediatric Gastroenterology and Nutrition 1, 303309.CrossRefGoogle ScholarPubMed
Carlson, S. E., Werkman, S. H., Peeples, J. M., Cooke, R. J. & Tolley, E. A. (1993 a). Arachidonic acid status correlates with first year growth in preterm infants. Proceedings of the National Academy of Sciences, USA 90, 10731077.CrossRefGoogle ScholarPubMed
Carlson, S. E., Werkman, S. H., Peeples, J. M., Cooke, R. J. & Wilson, W. W. (1992 a). Plasma phospholipid arachidonic acid and growth and development of preterm infants. In Recent Advances in Infant Feeding, pp. 2227 [Koletzko, B., Okken, A., Rey, J., Salle, B. and van Biervliet, J. P., editors]. Stuttgart: Thieme.Google Scholar
Carlson, S. E., Werkman, S. H., Rhodes, P. G. & Tolley, E. A. (1993 b). Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. American Journal of Clinical Nutrition 58, 3542.Google ScholarPubMed
Carnielli, V. P., Luijendijk, I. H. T., van Goudoever, J. B., Sulkers, E. J., Boerlage, A., Degenhart, H. J. & Sauer, J. J. (1994). Feeding premature newborn infants palmitic acid in amounts and stereo isomeric position similar to human milk: effects on fat and mineral balance. American Journal of Clinical Nutrition (submitted).Google Scholar
Carr, B. R. & Simpson, E. R. (1981). Synthesis of cholesterol in the human fetus: 3-hydroxy-3-methylglutaryl coenzyme A reductase activity of liver microsomes. Journal of Clinical Endocrinology and Metabolism 53, 810812.CrossRefGoogle ScholarPubMed
Carver, J. D., Pimentel, B., Cox, W. I. & Barness, L. A. (1991). Dietary nucleotide effects upon immune function in infants. Pediatrics 88, 359363.Google ScholarPubMed
Casey, C. E. & Neville, M. C. (1987). Studies in human lactation. 3. Molybdenum and nickel in human milk during the first month of lactation. American Journal of Clinical Nutrition 45, 921926.Google ScholarPubMed
Chierici, R., Sawatzki, G., Tamisari, L., Volpato, S. & Vigi, V. (1992). Supplementation of an adapted formula with bovine lactoferrin. 2. Effects on serum iron, ferritin and zinc levels. Acta Paediatrica 81, 475479.CrossRefGoogle ScholarPubMed
Christie, W. W. (1986). The positional distributions of fatty acids in triglycerides. In Analysis of Oils and Fats, pp. 313340 [Hamilton, R.J., Rossell, J.B. & Reffold, D., editors]. London: Elsevier.Google Scholar
Chung, T. D. Y. & Raymond, K. N. (1993). Lactoferrin: the role of conformational changes in its iron binding and release. Journal of the American Chemical Society 115, 67656768.CrossRefGoogle Scholar
Clandinin, M. T., Chappell, J. E., Leong, S., Heim, T., Swyer, P. R. & Chance, G. W. (1980 a). Intrauterine fatty acid accretion rates in infant brain: implications for fatty acid requirements. Early Human Development 4, 121129.CrossRefGoogle ScholarPubMed
Clandinin, M. T., Chappell, J. E., Leong, S., Heim, T., Swyer, P. R. & Chance, G. W. (1980 b). Extrauterine fatty acid accretion rates in infant brain; implications for fatty acid requirements. Early Human Development 4, 131138.CrossRefGoogle ScholarPubMed
Clark, K. J., Makrides, M., Neumann, M. A. & Gibson, R. A. (1992). Determination of the optimal ratio of linoleic acid to α-linolenic acid in infant formulas. Journal of Pediatrics 120, S151S158.CrossRefGoogle ScholarPubMed
Clark, R. M. & Hundrieser, K. E. (1989). Changes in cholesteryl esters of human milk with total milk lipid. Journal of Pediatric Gastroenterology and Nutrition 9, 347350.CrossRefGoogle ScholarPubMed
Cockburn, F. (1994). Neonatal brain and dietary lipids. Archives of Disease in Childhood 70, F1F2.CrossRefGoogle ScholarPubMed
Committee on Nutrition, American Academy of Pediatrics. (1976). Commentary on breast-feeding and infant formulas, including proposed standards for formulas. Pediatrics 57, 278285.Google ScholarPubMed
Committee on Nutrition, American Academy of Pediatrics. (1992). The use of whole cow's milk in infancy. Pediatrics 89, 11051109.Google Scholar
Coppa, G. V., Gabrielli, O., Giorgi, P., Catassi, C., Montanari, M. P., Varaldo, P. E. & Nichols, B. L. (1990). Preliminary study of breastfeeding and bacterial adhesion to uroepithelial cells. Lancet 335, 569571.CrossRefGoogle ScholarPubMed
Coppa, G. V., Gabrielli, O., Pierani, P., Catassi, C., Carlucci, A. & Giorgi, P. L. (1993). Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics 91, 637641.Google ScholarPubMed
Coppa, G. V., Gabrielli, O., Pierani, P., Zampini, L., Rottoli, G., Carlucci, A. & Giorgi, P. L. (1991). [Qualitative and quantitative studies of carbohydrates of human colostrum and mature milk.] Rivista Italiana di Pediatria 17, 303307.Google Scholar
Dallman, P. R. (1986). Iron deficiency in the weanling: a nutritional problem on the way to resolution. Acta Paediatrica Scandinavica Suppl. 323, 5967.CrossRefGoogle ScholarPubMed
Daniel, H., Vohwinkel, M. & Rehner, G. (1990). Effect of casein and β-casomorphins on gastrointestinal motility in rats. Journal of Nutrition 120, 252257.Google ScholarPubMed
Davidson, G. P., Whyte, P. B. D., Daniels, E., Franklin, K., Nunan, H., McCloud, P. I., Moore, A. G. & Moore, D. J. (1989). Passive immunisation of children with bovine colostrum containing antibodies to human rotavirus. Lancet 11, 709712.CrossRefGoogle Scholar
Davidson, L.-A. & Lönnerdal, B. (1987). Persistence of human milk proteins in the breastfed infant. Acta Paediatrica Scandinavica 76, 733740.CrossRefGoogle Scholar
Davidsson, L., Kastenmayer, P., Yuen, M., Lönnerdal, B. & Hurrell, R. F. (1994). Influence of lactoferrin on iron absorption from human milk in infants. Pediatric Research 35, 117124.CrossRefGoogle ScholarPubMed
Davin, J.-C., Senterre, J. & Mahieu, P. R. (1991). The high lectin-binding capacity of human secretory IgA protects nonspecifically mucosae against environmental antigens. Biology of the Neonate 59, 121125.CrossRefGoogle ScholarPubMed
Deelstra, H., van Schoor, O., Robberecht, H., Clara, R. & Eylenbosch, W. (1988). Daily chromium intake by infants in Belgium. Acta Paediatrica Scandinavica 77, 402407.CrossRefGoogle ScholarPubMed
DeLucchi, C., Pita, M. L., Faus, M. J., Molina, J. A., Uauy, R. & Gil, A. (1987). Effects of dietary nucleotides on the fatty acid composition of erythrocyte membrane lipids in term infants. Journal of Pediatric Gastroenterology and Nutrition 6, 568574.CrossRefGoogle ScholarPubMed
Department of Health and Social Security (1977). The Composition of Mature Human Milk (Reports on Health and Social Subjects no. 12). London: HMSO.Google ScholarPubMed
Donovan, S. M. & Lönnerdal, B. (1989). Non-protein nitrogen and true protein in infant formulas. Acta Paediatrica Scandinavica 78, 497504.CrossRefGoogle ScholarPubMed
Dörner, K., Schneider, K., Sievers, E., Schulz-Lell, G., Oldigs, H.-D. & Schaub, J. (1990). Selenium balances in young infants fed on breast milk and adapted cow's milk formula. Journal of Trace Elements and Electrolytes in Health and Disease 4, 3740.Google ScholarPubMed
Ebina, T., Sato, A., Umezu, K., Ishida, N., Ohyama, S., Oizumi, A., Aikawa, K., Katagiri, S., Katsushima, N., Imai, A., Kitaoka, S., Suzuki, H. & Konno, T. (1985). Prevention of rotavirus infection by oral administration of cow colostrum containing antihumanrotavirus antibody. Medical Microbiology and Immunology 174, 177185.CrossRefGoogle ScholarPubMed
Edmond, J., Korsak, R. A., Morrow, J. W., Torok-Both, G. & Catlin, D. H. (1991). Dietary cholesterol and the origin of cholesterol in the brain of developing rats. Journal of Nutrition 121, 13231330.Google ScholarPubMed
Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell, H. M., Harwalkar, V. R., Jenness, R. & Whitney, R. McL. (1984). Nomenclature of proteins of cow's milk: fifth revision. Journal of Dairy Science 67, 15991631.CrossRefGoogle Scholar
Engelhardt, E. L., Sankar, M., Wu-Wang, C. Y., Thomas, M. R., Walker, W. R. & Neu, J. (1991). Effect of cholesterol deprivation on piglet small intestinal and serum lipids. Journal of Pediatric Gastroenterology and Nutrition 12, 494500.CrossRefGoogle ScholarPubMed
ESPGAN Committee on Nutrition. (1982). Guidelines on infant nutrition. III. Recommendations for infant feeding. Acta Paediatrica Scandinavica Suppl. 302, 127.Google ScholarPubMed
ESPGAN Committee on Nutrition. (1991). Comment on the content and composition of lipids in infant formulas. Acta Paediatrica Scandinavica 80, 887896.CrossRefGoogle ScholarPubMed
Evans, D. G., Evans, D. J., Moulds, J. J. & Graham, D. Y. (1988). N-acetylneuraminyllactose-binding fibrillar hemagglutinin of Campylobacter pylori: a putative colonization factor antigen. Infection and Immunity 56, 28962906.Google ScholarPubMed
Facon, M., Skura, B. J. & Nakai, S. (1993). Potential for immunological supplementation of foods. Food and Agricultural Immunology 5, 8591.CrossRefGoogle Scholar
Fairweather-Tait, S. J., Balmer, S. E., Scott, P. H. & Minski, M. J. (1987). Lactoferrin and iron absorption in newborn infants. Pediatric Research 22, 651654.CrossRefGoogle ScholarPubMed
Fall, C. H. D., Barker, D. J. P., Osmond, C., Winter, P. D., Clark, P. M. S. & Hales, C. N. (1992). Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease. British Medical Journal 304, 801805.CrossRefGoogle ScholarPubMed
Farquharson, J., Cockburn, F., Patrick, W. A., Jamieson, E. C. & Logan, R. W. (1992). Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet 340, 810813.CrossRefGoogle ScholarPubMed
Farquharson, J., Cockburn, F., Patrick, W. A., Jamieson, E. C. & Logan, R. W. (1993). Effect of diet on infant subcutaneous tissue triglyceride fatty acids. Archives of Disease in Childhood 69, 589593.CrossRefGoogle ScholarPubMed
Fazzolari-Nesci, A., Domianello, D., Sotera, V. & Räihä, N. C. R. (1992). Tryptophan fortification of adapted formula increases plasma tryptophan concentrations to levels not different from those found in breast-fed infants. Journal of Pediatric Gastroenterology and Nutrition 14, 456459.CrossRefGoogle Scholar
Filer, L. J., Mattson, F. H. & Fomon, S. J. (1969). Triglyceride configuration and fat absorption by the human infant. Journal of Nutrition 99, 293298.Google ScholarPubMed
Fomon, S. J., Bier, D. M., Matthews, D. E., Rogers, R. R., Edwards, B. B., Ziegler, E. E. & Nelson, S. E. (1988). Bioavailability of dietary urea nitrogen in the breast-fed infant. Journal of Pediatrics 113, 515517.CrossRefGoogle ScholarPubMed
Fomon, S. J., Rogers, R. R., Ziegler, E. E., Nelson, S. E. & Thomas, L. N. (1984). Indices of fatness and serum cholesterol at age eight years in relation to feeding and growth during early infancy. Pediatric Research 18, 12331238.CrossRefGoogle ScholarPubMed
Fomon, S. J., Ziegler, E. E. & Nelson, S. E. (1993). Erythrocyte incorporation of ingested 58Fe by 56-day-old breast-fed and formula-fed infants. Pediatric Research 33, 573576.CrossRefGoogle ScholarPubMed
Foreman-van Drongelen, M. M. H. P., van Houwelingen, A. C., Kester, A. D. M., de Jong, A. E. P., Blanco, C. E., Hasaart, T. H. M. & Hornstra, G. (1994). Long chain polyene status of preterm infants with regard to the fatty acid composition of their diet: comparison between absolute and relative fatty acid amounts in plasma and red blood cell phospholipids. British Journal of Nutrition (in press).Google Scholar
Foucault, P., Bureau, F., Bougle, D., Neuville, D., Duhamel, J. F. & Drosdowsky, M. (1989). [Trace elements in 26 infant formulas.] Cahiers de Nutrition et de Diététique 24, 385388.Google Scholar
Freeman, C. P., Jack, E. L. & Smith, L. M. (1965). Intramolecular fatty acid distribution in the milk fat triglycerides of several species. Journal of Dairy Science 48, 853858.CrossRefGoogle ScholarPubMed
Gauhe, A., György, P., Hoover, J. R. E., Kuhn, R., Rose, C. S., Ruelius, H. W. & Zilliken, F. (1954). Bifidus factor. IV. Preparations obtained from human milk. Archives of Biochemistry and Biophysics 48, 214224.CrossRefGoogle ScholarPubMed
Gil, A., Corral, E., Martinez, A. & Molina, J. A. (1986 a). Effects of the addition of nucleotides to an adapted milk formula on the microbial pattern of faeces in at term newborn infants. Journal of Clinical Nutrition and Gastroenterology 1, 127132.Google Scholar
Gil, A., Pita, M., Martinez, A., Molina, J. A. & Sanchez Medina, F. (1986 b). Effect of dietary nucleotides on the plasma fatty acids in at-term neonates. Human Nutrition: Clinical Nutrition 40C, 185195.Google Scholar
Gil, A. & Sanchez- Medina, F. (1982). Acid-soluble nucleotides of human milk at different stages of lactation. Journal of Dairy Research 49, 301307.CrossRefGoogle ScholarPubMed
Goldman, A. S. (1989). Immunologic supplementation of cow's milk formulations. International Dairy Federation Bulletin no. 244, 3843.Google Scholar
Goldman, A. S., Garza, C., Nichols, B. L. & Goldblum, R. M. (1982). Immunologic factors in human milk during the first year of lactation. Journal of Pediatrics 100, 563567.CrossRefGoogle ScholarPubMed
Goldman, A. S. & Goldblum, R. M. (1989). Immunoglobulins in human milk. In Protein and Non-protein Nitrogen in Human Milk, pp. 4351 [Atkinson, S. A. and Lönnerdal, B, editors]. Boca Raton, FL: CRC Press.Google Scholar
Gross, S. J., David, R. J., Bauman, L. & Tomarelli, R. M. (1980). Nutritional composition of milk produced by mothers delivering preterm. Journal of Pediatrics 96, 641644.CrossRefGoogle ScholarPubMed
Hallberg, L., Rossander-Hulten, L., Brune, M. & Gleerup, A. (1992). Bioavailability in man of iron in human milk and cow's milk in relation to their calcium contents. Pediatric Research 31, 524527.CrossRefGoogle ScholarPubMed
Hallman, M., Bry, K., Hoppu, K., Lappi, M. & Pohjavuori, M. (1992). Inositol supplementation in premature infants with respiratory distress syndrome. New England Journal of Medicine 326, 12331239.CrossRefGoogle ScholarPubMed
Hambraeus, L., Lönnerdal, B., Forsum, E. & Gebre-Medhin, M. (1978). Nitrogen and protein components of human milk. Acta Paediatrica Scandinavica 67, 561565.CrossRefGoogle ScholarPubMed
Hamosh, M. (1988). Does infant nutrition affect adiposity and cholesterol levels in the adult? Journal of Pediatric Gastroenterology and Nutrition 7, 1016.CrossRefGoogle ScholarPubMed
Hanning, R. M., Paes, B. & Atkinson, S. A. (1992). Protein metabolism and growth of term infants in response to a reduced-protein 40:60 whey: casein formula with added tryptophan. American Journal of Clinical Nutrition 56, 10041011.Google ScholarPubMed
Hanson, L. Å., Ashraf, R., Zaman, S., Karlberg, J., Lindblad, B. S. & Jalil, F. (1994). Breast feeding is a natural contraceptive and prevents disease and death in infants, linking infant mortality and birth rates. Acta Paediatrica 83, 36.CrossRefGoogle ScholarPubMed
Harrison, G. G., Graver, E. J., Vargas, M., Churella, H. R. & Paule, C. L. (1987). Growth and adiposity of term infants fed whey-predominant or casein-predominant formulas or human milk. Journal of Pediatric Gastroenterology and Nutrition 6, 739747.CrossRefGoogle ScholarPubMed
Harzer, G. & Bindels, J. G. (1985). Changes in human milk immunoglobulin A and lactoferrin during early lactation. In Composition and Physiological Properties of Human Milk, pp. 285293 [Schaub, Jeditor]. Amsterdam: Elsevier Science Publishers.Google Scholar
Harzer, G., Haug, M. & Bindels, J. G. (1986). Biochemistry of maternal milk in early lactation. Human Nutrition: Applied Nutrition 40A, Suppl. 1, 1118.Google Scholar
Haschke, F.|Vanura, H.|Male, C., Owen, G., Pietschnig, B., Schuster, E., Krobath, E. & Huemer, C. (1993). Iron nutrition and growth of breast- and formula-fed infants during the first 9 months of life. Journal of Pediatric Gastroenterology and Nutrition 16, 151156.CrossRefGoogle ScholarPubMed
Hayes, K. C., Pronczuk, A., Wood, R. A. & Guy, D. G. (1992). Modulation of infant formula fat profile alters the low-density lipoprotein/high-density lipoprotein ratio and plasma fatty acid distribution relative to those with breast-feeding. Journal of Pediatrics 120, S109S116.CrossRefGoogle ScholarPubMed
Heine, W., Tiess, M. & Wutzke, K. D. (1986). 15N-tracer investigations of the physiological availability of urea nitrogen in mother's milk. Acta Paediatrica Scandinavica 75, 439443.CrossRefGoogle ScholarPubMed
Heinig, M. J., Nommsen, L. A., Peerson, J. M., Lönnerdal, B. & Dewey, K. G. (1993). Energy and protein intakes of breast-fed and formula-fed infants during the first year of life and their association with growth velocity: the DARLING study. American Journal of Clinical Nutrition 58, 152161.Google ScholarPubMed
Hillman, L. S., Chow, W., Salmons, S. S., Weaver, E., Erickson, M. & Hansen, J. (1988). Vitamin D metabolism, mineral homeostasis, and bone mineralization in term infants fed human milk, cow milk-based formula, or soybased formula. Journal of Pediatrics 112, 864874.CrossRefGoogle ScholarPubMed
Hodgson, P. A., Ellefson, R. D., Elveback, L. R., Harris, L. E., Nelson, R. A. & Weidman, W. H. (1976). Comparison of serum cholesterol in children fed high, moderate, or low cholesterol milk diets during neonatal period. Metabolism 25, 739746.CrossRefGoogle ScholarPubMed
Holmgren, J., Svennerholm, A.-M. & Lindblad, M. (1983). Receptor-like glycocompounds in human milk that inhibit classical and EI Tor Vibrio cholerae cell adherence (hemagglutination). Infection and Immunity 39, 147154.Google Scholar
Howie, P. W., Forsyth, J. S., Ogston, S. A., Clark, A. & Florey, C. du V. (1990). Protective effect of breast feeding against infection. British Medical Journal 300, 1116.CrossRefGoogle ScholarPubMed
Hurrell, R. F., Lynch, S. R., Trinidad, T. P., Dassenko, S. A. & Cook, J. D. (1989). Iron absorption in humans as infuenced by bovine milk proteins. American Journal of Clinical Nutrition 49, 546552.Google Scholar
Huttunen, J. K., Saarinen, U. M., Kostiainen, E. & Siimes, M. A. (1983). Fat composition of the infant diet does not influence subsequent serum lipid levels in man. Atherosclerosis 46, 8794.CrossRefGoogle Scholar
Iyer, S. & Lönnerdal, B. (1993). Lactoferrin, lactoferrin receptors and iron metabolism. European Journal of Clinical Nutrition 47, 232241.Google ScholarPubMed
Janas, L. M. & Picciano, M. F. (1982). The nucleotide profile of human milk. Pediatric Research 16, 659662.CrossRefGoogle ScholarPubMed
Janas, L. M., Picciano, M. F. & Hatch, T. F. (1985). Indices of protein metabolism in term infants fed human milk, whey-predominant formula, or cow's milk formula. Pediatrics 75, 775784.Google ScholarPubMed
Janas, L. M., Picciano, M. F. & Hatch, T. F. (1987). Indices of protein metabolism in term infants fed either human milk or formulas with reduced protein concentration and various whey/casein ratios. Journal of Pediatrics 110, 838848.CrossRefGoogle ScholarPubMed
Järvenpää, A. L., Räihä, N. C. R., Rassin, D. K. & Gaull, G. E. (1982 a). Milk protein quantity and quality in the term infant. I. Metabolic responses and effects on growth. Pediatrics 70, 214220.Google ScholarPubMed
Järvenpää, A. L., Räihä, N. C. R., Rassin, D. K. & Gaull, G. E. (1982 b). Milk protein quantity and quality in the term infant. II. Effects on acidic and neutral amino acids. Pediatrics 70, 221230.Google ScholarPubMed
Jason, J. M., Nieburg, P. & Marks, J. S. (1984). Mortality and infectious disease associated with infant-feeding practices in developing countries. Pediatrics 74, 702727.Google ScholarPubMed
Jooste, P. L., Rossouw, L. J., Steenkamp, H. J., Rossouw, J. E., Swanepoel, A. S. P. & Charlton, D. O. (1991). Effect of breast feeding on the plasma cholesterol and growth of infants. Journal of Pediatric Gastroenterology and Nutrition 13, 139142.CrossRefGoogle ScholarPubMed
Kalhoff, H., Manz, F., Diekmann, L. & Stock, G. J. (1990). Suboptimal mineral composition of cow's milk formulas: a risk factor for the development of late metabolic acidosis. Acta Paediatrica Scandinavica 79, 743749.CrossRefGoogle ScholarPubMed
Kallio, M. J. T., Salmenperä, L., Siimes, M. A., Perheentupa, J. & Miettinen, T. A. (1992). Exclusive breast-feeding and weaning: effect on serum cholesterol and lipoprotein concentrations in infants during the first year of life. Pediatrics 89, 663666.Google ScholarPubMed
Kidwell, W. R. & Salomon, D. S. (1989). Growth factors in human milk: sources and potential physiological roles. In Protein and Non-protein Nitrogen in Human Milk, pp. 117133 [Atkinson, S. A. and Lönnerdal, B editors]. Boca Raton, FL: CRC Press.Google Scholar
Koletzko, B., Thiel, I. & Abiodun, P. O. (1992). The fatty acid composition of human milk in Europe and Africa. Journal of Pediatrics 120, S62S70.CrossRefGoogle ScholarPubMed
Korhonen, T. K., Valtonen, M. V., Parkkinen, J., Väisänen-Rhen, V., Finne, J., Ørskov, F., Ørskov, I., Svenson, S. B. & Mäkelä, P. H. (1985). Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis. Infection and Immunity 48, 486491.Google ScholarPubMed
Krimpenfort, P. (1993). The production of human lactoferrin in the milk of transgenic animals. Cancer Detection and Prevention 17, 301305.Google ScholarPubMed
Krinsky, N. I. (1988). The evidence for the role of carotenoids in preventive health. Clinical Nutrition 7, 107112.Google Scholar
Kuhn, D. C. & Crawford, M. (1986). Placental essential fatty acid transport and prostaglandin synthesis. Progress in Lipid Research 25, 345353.CrossRefGoogle ScholarPubMed
Kumpulainen, J. T. (1992). Chromium content of foods and diets. Biological Trace Element Research 32, 918.CrossRefGoogle ScholarPubMed
Kumpulainen, J., Salmenperä, L., Siimes, M. A., Koivistoinen, P., Lehto, J. & Perheentupa, J. (1987). Formula feeding results in lower selenium status than breast-feeding or selenium supplemented formula feeding: a longitudinal study. American Journal of Clinical Nutrition 45, 4953.Google ScholarPubMed
Kunz, C. & Lönnerdal, B. (1990). Casein and casein subunits in preterm milk, colostrum, and mature human milk. Journal of Pediatric Gastroenterology and Nutrition 10, 454461.CrossRefGoogle ScholarPubMed
Kunz, C. & Lönnerdal, B. (1992). Re-evaluation of the whey protein/casein ratio of human milk. Acta Paediatrica 81, 107112.CrossRefGoogle ScholarPubMed
Kunz, C. & Rudloff, S. (1993). Biological functions of oligosaccharides in human milk. Acta Paediatrica 82, 903912.CrossRefGoogle ScholarPubMed
Lakshman, M. R., Johnson, L. H., Okoh, C., Attlesey, M., Mychkovsky, I. & Bhagavan, H. N. (1993). Conversion of all trans β-carotene to retinal by an enzyme from the intestinal mucosa of human neonates. Journal of Nutritional Biochemistry 4, 659663.CrossRefGoogle Scholar
Lammi-Keefe, C. J., Ferris, A. M. & Jensen, R. G. (1990). Changes in human milk at 06.00, 10.00, 18.00 and 22.00 h. Journal of Pediatric Gastroenterology and Nutrition 11, 8388.CrossRefGoogle Scholar
Li-Chan, E. & Nakai, S. (1989). Enzymic dephosphorylation of bovine casein to improve acid clotting properties and digestibility for infant formula. Journal of Dairy Research 56, 381390.CrossRefGoogle ScholarPubMed
Lien, E. L., Yuhas, R. J., Boyle, F. G. & Tomarelli, R. M. (1993). Corandomization of fats improves absorption in rats. Journal of Nutrition 123, 18591867.Google ScholarPubMed
Litov, R. E., Sickles, V. S., Chan, G. M., Hargett, I. R. & Cordano, A. (1989). Selenium status in term infants fed human milk or infant formula with or without added selenium. Nutrition Research 9, 585596.CrossRefGoogle Scholar
Lönnerdal, B. & Chen, C.-L. (1990). Effects of formula protein level and ratio on infant growth, plasma amino acids and serum trace elements. 1. Cow's milk formula. Acta Paediatrica Scandinavica 79, 257265.CrossRefGoogle ScholarPubMed
Lucas, A., Davies, P. S. W. & Phil, M. (1990). Physiologic energy content of human milk. In Breastfeeding, Nutrition, Infection and Infant Growth in Developed and Emerging Countries, pp. 337357 [Atkinson, S. A., Hanson, L. Å. and Chandra, R. K., editors]. Newfoundland: ARTS Biomedical Publishers and Distributors.Google Scholar
McGuire, M. K., Burgert, S. L., Milner, J. A., Glass, L., Kummer, R., Deering, R., Boucek, R. & Picciano, M. F. (1993). Selenium status of infants is influenced by supplementation of formula or maternal diets. American Journal of Clinical Nutrition 58, 643648.Google ScholarPubMed
Makrides, M., Neumann, M. A., Simmer, K. & Gibson, R. A. (1993 a). Dietary supply of polyunsaturated fats and neural function of infants. XII National Conference of the Dieticians Association of Australia. Abstract.Google Scholar
Makrides, M., Simmer, K., Goggin, M. & Gibson, R. A. (1993 b). Erythrocyte docosahexaenoic acid correlates with the visual response of healthy, term infants. Pediatric Research 33, 425427.Google ScholarPubMed
Manz, F. (1992). Why is the phosphorus content of human milk exceptionally low? Monatsschrift für Kinderheilkunde 140, Suppl. 1, S35S39.Google ScholarPubMed
Martin, J.-C., Bougnoux, P., Antoine, J.-M., Lanson, M. & Couet, C. (1993). Triacylglycerol structure of human colostrum and mature milk. Lipids 28, 637643.CrossRefGoogle ScholarPubMed
Mevissen-Verhage, E. A. E., Marcelis, J. H., Harmsen-Van Amerongen, W. C. M., de Vos, N. M., Berkel, J. & Verhoef, J. (1985). Effect of iron on neonatal gut flora during the first week of life. European Journal of Clinical Microbiology 4, 1419.CrossRefGoogle ScholarPubMed
Migliore-Samour, D. & Jollès, P. (1988). Casein, a prohormone with an immunomodulating role for the newborn? Experientia 44, 188193.CrossRefGoogle ScholarPubMed
Mimouni, F., Campaigne, B., Neylan, M. & Tsang, R. C. (1993). Bone mineralization in the first year of life in infants fed human milk, cow-milk formula, or soy-based formula. Journal of Pediatrics 122, 348354.CrossRefGoogle ScholarPubMed
Morgan, B. L. G. & Winick, M. (1980). Effects of administration of N-acetylneuraminic acid (NANA) on brain NANA content and behavior. Journal of Nutrition 110, 416424.Google ScholarPubMed
Morgan, B. L. G. & Winick, M. (1981). The subcellular localization of administered N-acetylneuraminic acid in the brains of well-fed and protein restricted rats. British Journal of Nutrition 46, 231238.CrossRefGoogle ScholarPubMed
Mott, G. E., Jackson, E. M. & McMahan, C. A. (1991). Bile composition of adult baboons is influenced by breast versus formula feeding. Journal of Pediatric Gastroenterology and Nutrition 12, 121126.CrossRefGoogle ScholarPubMed
Mott, G. E., Jackson, E. M., McMahan, C. A. & McGill, H. C. (1990). Cholesterol metabolism in adult baboons is influenced by infant diet. Journal of Nutrition 120, 243251.Google ScholarPubMed
Nakai, S. & Li-Chan, E. (1987). Effect of clotting in stomachs of infants on protein digestibility of milk. Food Microstructure 6, 161170.Google Scholar
Neeser, J.-R., Golliard, M. & Del Vedovo, S. (1991). Quantitative determination of complex carbohydrates in bovine milk and in milk-based infant formulas. Journal of Dairy Science 74, 28602871.CrossRefGoogle ScholarPubMed
Nelson, S. E., Ziegler, E. E., Copeland, A. M., Edwards, B. B. & Fomon, S. J. (1988). Lack of adverse reactions to iron-fortified formula. Pediatrics 81, 360364.Google ScholarPubMed
Nichols, B. L., McKee, K. S., Henry, J. F. & Putman, M. (1987). Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatric Research 21, 563567.CrossRefGoogle ScholarPubMed
Novak, D. A., Carver, J. D. & Barness, L. A. (1994). Dietary nucleotides affect hepatic growth and composition in the weanling mouse. Journal of Parenteral and Enteral Nutrition 18, 6266.CrossRefGoogle ScholarPubMed
Oski, F. A. (1980). Iron-fortified formulas and gastrointestinal symptoms in infants: a controlled study. Pediatrics 66, 168170.Google Scholar
Ostrea, E. M., Balun, J. E., Winkler, R. & Porter, T. (1986). Influence of breast-feeding on the restoration of the low serum concentration of vitamin E and β-carotene in the newborn infant. American Journal of Obstetrics and Gynecology 154, 10141017.CrossRefGoogle ScholarPubMed
Parkkinen, J. & Finne, J. (1987). Isolation of sialyl oligosaccharides and sialyl oligosaccharide phosphates from bovine colostrum and human urine. Methods in Enzymology 138, 289300.CrossRefGoogle ScholarPubMed
Pegg, A. E. (1986). Recent advances in the biochemistry of polyamines in eukaryotes. Biochemical Journal 234, 249262.CrossRefGoogle ScholarPubMed
Pereira, G. R., Baker, L., Egler, J., Corcoran, L. & Chiavacci, R. (1990). Serum myoinositol concentrations in premature infants fed human milk, formula for infants, and parenteral nutrition. American Journal of Clinical Nutrition 51, 589593.Google ScholarPubMed
Petschow, B. W. & Talbott, R. D. (1991). Response of bifidobacterium species to growth promotors in human and cow milk. Pediatric Research 29, 208213.CrossRefGoogle Scholar
Picone, T. A., Benson, J. D., Moro, G., Minoli, I., Fulconis, F., Rassin, D. K. & Räihä, N. C. R. (1989). Growth|serum biochemistries, and amino acids of term infants fed formulas with amino acid and protein concentrations similar to human milk. Journal of Pediatric Gastroenterology and Nutrition 9, 351360.CrossRefGoogle ScholarPubMed
Pollack, P. F., Koldovsky, O. & Nishioka, K. (1992). Polyamines in human and rat milk and in infant formulas. American Journal of Clinical Nutrition 56, 371375.Google ScholarPubMed
Prentice, A. M., Lucas, A., Vasquez-Velasquez, L., Davies, P. S. W. & Whitehead, R. G. (1988). Are current dietary guidelines for young children a prescription for overfeeding? Lancet 2, 10661069.CrossRefGoogle ScholarPubMed
Quan, R. & Barness, L. A. (1990). Do infants need nucleotide supplemented formula for optimal nutrition? Journal of Pediatric Gastroenterology and Nutrition 11, 429434.Google ScholarPubMed
Quinlan, P. & Moore, S. (1993). Modification of triglycerides by lipases: process technology and its application to the production of nutritionally improved fats. Inform 4, 580585.Google Scholar
Räihä, N. C. R. (1985). Nutritional proteins in milk and the protein requirement of normal infants. Pediatrics 75, S136S141.Google ScholarPubMed
Räihä, N., Minoli, I. & Moro, G. (1986 a). Milk protein intake in the term infant. I. Metabolic responses and effects on growth. Acta Paediatrica Scandinavica 75, 881886.CrossRefGoogle ScholarPubMed
Räihä, N., Minoli, I., Moro, G. & Bremer, H. J. (1986 b). Milk protein intake in the term infant. II. Effects on plasma amino acid concentrations. Acta Paediatrica Scandinavica 75, 887892.CrossRefGoogle ScholarPubMed
Roekens, E., Robberecht, H., van Caillie-Bertrand, M., Deelstra, H. & Clara, R. (1985). Daily intake of selenium by bottle-fed infants in Belgium. European Journal of Pediatrics 144, 4548.CrossRefGoogle ScholarPubMed
Romain, N., Dandrifosse, G., Jeusette, F. & Forget, P. (1992). Polyamine concentration in rat milk and food, human milk, and infant formulas. Pediatric Research 32, 5863.CrossRefGoogle ScholarPubMed
Rönneberg, R. & Skåra, B. (1992). Essential fatty acids in human colostrum. Acta Paediatrica 81, 779783.Google ScholarPubMed
Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G. & Hoekstra, W. G. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588590.CrossRefGoogle ScholarPubMed
Rubin, D. H., Leventhal, J. M., Krasilnikoff, P. A., Kuo, H. S., Jekel, J. F., Weile, B., Levee, A., Kurzon, M. & Berget, A. (1990). Relationship between infant feeding and infectious illness: a prospective study of infants during the first year of life. Pediatrics 85, 464471.Google ScholarPubMed
Saarinen, U. M. & Siimes, M. A. (1977). Iron absorption from infant milk formula and the optimal level of iron supplementation. Acta Paediatrica Scandinavica 66, 719722.CrossRefGoogle ScholarPubMed
Saarinen, U. M., Siimes, M. A. & Dallman, P. R. (1977). Iron absorption in infants: high bioavailability of breast milk iron as indicated by the extrinsic tag method of iron absorption and by the concentration of serum ferritin. Journal of Pediatrics 91, 3639.CrossRefGoogle ScholarPubMed
Saito, H., Miyakawa, H., Tamura, Y., Shimamura, S. & Tomita, M. (1991). Potent bactericidal activity of bovine lactoferrin hydrolysate produced by heat treatment at acidic pH. Journal of Dairy Science 74, 37243730.CrossRefGoogle ScholarPubMed
Sanchez-Pozo, A., Morillas, J., Molto, L., Robles, R. & Gil, A. (1994). Dietary nucleotides influence lipoprotein metabolism in newborn infants. Pediatric Research 35, 112116.CrossRefGoogle ScholarPubMed
Schroten, H., Plogmann, R., Hanisch, F. G., Hacker, J., Nobis-Bosch, R. & Wahn, V. (1993). Inhibition of adhesion of S-fimbriated E. coli to buccal epithelial cells by human skim milk is predominantly mediated by mucins and depends on the period of lactation. Acta Paediatrica 82, 611.CrossRefGoogle Scholar
Schulz-Lell, G., Dörner, K., Oldigs, H. D., Sievers, E. & Schaub, J. (1991). Iron availability from an infant formula supplemented with bovine lactoferrin. Acta Paediatrica Scandinavica 80, 155158.CrossRefGoogle ScholarPubMed
Shield, J., Meville, C., Novelli, V., Anderson, G., Scheimberg, I., Gibb, D. & Milla, P. (1993). Bovine colostrum immunoglobulin concentrate for cryptosporidiosis in AIDS. Archives of Disease in Childhood 69, 451453.CrossRefGoogle Scholar
Siimes, M. A., Vuori, E. & Kuitunen, P. (1979). Breast milk iron: a declining concentration during the course of lactation. Acta Paediatrica Scandinavica 68, 2931.CrossRefGoogle ScholarPubMed
Small, D. M. (1991). The effects of glyceride structure on absorption and metabolism. Annual Review of Nutrition 11, 413434.CrossRefGoogle ScholarPubMed
Specker, B. L., Tsang, R. C., Ho, M. L., Landi, T. M. & Gratton, T. L. (1991). Low serum calcium and high parathyroid hormone levels in neonates fed 'humanized' cow's milk-based formula. American Journal of Diseases of Children 145, 941945.Google ScholarPubMed
Steinberg, L. A., O'Connell, N. C., Hatch, T. F., Picciano, M. F. & Birch, L. L. (1992). Tryptophan intake influences infants' sleep latency. Journal of Nutrition 122, 17811791.Google ScholarPubMed
Subbiah, M. T. R., Sprinkle, J. D., Rymaszewski, Z. & Yunker, R. L. (1989). Short-term exposure to high dietary cholesterol in early life: arterial changes and response after normalization of plasma cholesterol. American Journal of Clinical Nutrition 50, 6872.Google ScholarPubMed
Tomarelli, R. M., Meyer, B. J., Weaber, J. R. & Bernhart, F. W. (1968). Effect of positional distribution on the absorption of the fatty acids of human milk and infant formulas. Journal of Nutrition 95, 583590.Google ScholarPubMed
Turner, R. B. & Kelsey, D. K. (1991). Passive immunization for prevention of rotavirus infection. Pediatric Research 29, 187A.Google Scholar
Tyson, J. E., Lasky, R., Flood, D., Mize, C., Picone, T. & Paule, C. L. (1989). Randomized trial of taurine supplementation for infants ≤ 1,300-gram birth weight: effect on auditory brainstem-evoked responses. Pediatrics 83, 406415.Google ScholarPubMed
Uauy, R., Birch, E., Birch, D. & Peirano, P. (1992). Visual and brain function measurements in studies of n-3 fatty acid requirements of infants. Journal of Pediatrics 120, S168S180.CrossRefGoogle ScholarPubMed
Uauy, R., Stringel, G., Thomas, R. & Quan, R. (1990). Effect of dietary nucleosides on growth and maturation of the developing gut in the rat. Journal of Pediatric Gastroenterology and Nutrition 10, 497503.CrossRefGoogle ScholarPubMed
Vainsel, M. (1992). Evaluation of a low-phosphate cow's milk diet on growth and bone mineralization of full-term infants. Monatsschrift für Kinderheilkunde 140, Suppl. 1, S45S50.Google ScholarPubMed
van Biervliet, J.-P., Vinaimont, N., Vercaemst, R. & Rosseneu, M. (1992). Serum cholesterol, cholesteryl ester, and high-density lipoprotein development in newborn infants: response to formulas supplemented with cholesterol and γ-linolenic acid. Journal of Pediatrics 120 (4), S101S108.CrossRefGoogle ScholarPubMed
Veerkamp, J. H. (1969). Uptake and metabolism of derivatives of 2-deoxy-2-amino-D-glucose in Bifidobacterium bifidum var. pennsylvanicus. Archives of Biochemistry and Biophysics 129, 248256.CrossRefGoogle ScholarPubMed
Venkataraman, P. S., Tsang, R. C., Greer, F. R., Noguchi, A., Laskarzewski, P. & Steichen, J. J. (1985). Late infantile tetany and secondary hyperparathyroidism in infants fed humanized cow milk formula. American Journal of Diseases of Children 139, 664668.CrossRefGoogle ScholarPubMed
Verkade, H. J., van Asselt, W. A., Vonk, R. J., Bijleveld, C. M. A., Fernandes, J., de Jong, H., Fidler, V. & Okken, A. (1989). Fat absorption in premature infants: the effect of lard and antibiotics. European Journal of Pediatrics 149, 126129.CrossRefGoogle ScholarPubMed
Viverge, D., Grimmonprez, L., Cassanas, G., Bardet, L. & Solere, M. (1990). Discriminant carbohydrate components of human milk according to donor secretor types. Journal of Pediatric Gastroenterology and Nutrition 11, 365370.CrossRefGoogle ScholarPubMed
Ward, S. D., Melin, J. R., Lloyd, F. P., Norton, J. A. & Christian, J. C. (1980). Determinants of plasma cholesterol in children – a family study. American Journal of Clinical Nutrition 33, 6370.Google ScholarPubMed
Wasserhess, P., Becker, M. & Staab, D. (1983). Effect of taurine on synthesis of neutral and acidic sterols and fat absorption in preterm and full-term infants. American Journal of Clinical Nutrition 58, 349353.Google ScholarPubMed
Wong, W. W., Hachey, D. L., Insull, W., Opekun, A. R. & Klein, P. D. (1993). Effect of dietary cholesterol on cholesterol synthesis in breast-fed and formula-fed infants. Journal of Lipid Research 34, 14031411.Google ScholarPubMed
Wright, A. L., Holberg, C. J., Martinez, F. D., Morgan, W. J., Taussig, L. M. & Group Health Medical Associates. (1989). Breast feeding and lower respiratory tract illness in the first year of life. British Medical Journal 299, 946949.CrossRefGoogle ScholarPubMed
Zamboni, G., Piemonte, G., Bolner, A., Antoniazzi, F., Dall'Agnola, A., Messner, H., Gambaro, G. & Tato, L. (1993). Influence of dietary taurine on vitamin D absorption. Acta Paediatrica 82, 811815.CrossRefGoogle ScholarPubMed
You have Access
40
Cited by