Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T22:27:54.698Z Has data issue: false hasContentIssue false

Quasi-Optimal Convergence Rate of an AFEM for Quasi-Linear Problems of Monotone Type

Published online by Cambridge University Press:  28 May 2015

Eduardo M. Garau*
Affiliation:
Departamento de Matemática, Facultad de Ingeniería Química and Instituto de Matemática Aplicada del Litoral (Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas). Güemes 3450. S3000GLN Santa Fe, Argentina
Pedro Morin*
Affiliation:
Departamento de Matemática, Facultad de Ingeniería Química and Instituto de Matemática Aplicada del Litoral (Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas). Güemes 3450. S3000GLN Santa Fe, Argentina
Carlos Zuppa*
Affiliation:
Departamento de Matemática, Facultad de Ciencias Físico Matemáticas y Naturales, Universidad Nacional de San Luis, Chacabuco 918, D5700BWT San Luis, Argentina
*
Corresponding author.Email address:egarau@santafe-conicet.gov.ar
Corresponding author.Email address:pmorin@santafe-conicet.gov.ar
Corresponding author.Email address:zuppa@unsl.edu.ar
Get access

Abstract

We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM) for a class of nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is based on residual-type a posteriori error estimators and Dörfler’s strategy is assumed for marking. We first prove a contraction property for a suitable definition of total error, analogous to the one used by Diening and Kreuzer (2008) and equivalent to the total error defined by Cascón et. al. (2008). This contraction implies linear convergence of the discrete solutions to the exact solution in the usual H1 Sobolev norm. Secondly, we use this contraction to derive the optimal complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and extend the theory from Cascón et. al. to a class of nonlinear problems which stem from strongly monotone and Lipschitz operators.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Binev, P., Dahmen, W., Devore, R., and Petrushev, P., Approximation Classes for Adaptive Methods, Serdica Math. J. 28 (2002), pp. 391416.Google Scholar
[2]Cascón, J. M., Kreuzer, C., Nochetto, R. H., and Siebert, K. G., Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, pp. 2524–2550.CrossRefGoogle Scholar
[3]Concus, P., Numerical solution of the nonlinear magnetostatic field equation in two dimensions, J. Comput. Phys. 1 (1967), pp. 330342.CrossRefGoogle Scholar
[4]Chow, S.-S., Finite element error estimates for nonlinear elliptic equations of monotone type, Numer. Math. 54 (1989), no. 4, pp. 373–393.CrossRefGoogle Scholar
[5]Dai, X., Xu, J., and Zhou, A., Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math. 110 (2008), pp. 313–355.CrossRefGoogle Scholar
[6]Diening, L. and Kreuzer, C., Linear convergence of an adaptive finite element method for the p-Laplacian equation, SIAM J. Numer. Anal. 46 (2008), no. 2, pp. 614638.CrossRefGoogle Scholar
[7]Dörfler, W., A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, pp. 11061124.CrossRefGoogle Scholar
[8]Garau, E. M., Morin, P., and Zuppa, C., Convergence of adaptive finite element methods for eigenvalue problems, Math. Models Methods Appl. Sci. 19 (2009), no. 5, pp. 721747.CrossRefGoogle Scholar
[9]Garau, E. M. and Morin, P., Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems, IMAJ. Numer. Anal. doi:10.1093/imanum/drp055 (2010)Google Scholar
[10]Garau, E. M., Morin, P., and Zuppa, C., Convergence of an adaptive Kačanov FEM for quasi-linear problems, Applied Numerical Mathematics 61 (2011), pp. 512529.CrossRefGoogle Scholar
[11]Gaspoz, F. D. and Morin, P., Convergence rates for adaptive finite elements, IMA J. Numer. Anal. 29 (2009), no. 4, pp. 917936.CrossRefGoogle Scholar
[12]Gaspoz, F. D. and Morin, P., Approximation classes for adaptive higher order finite element approximation, Submitted, 2011.Google Scholar
[13]Giani, S. and Graham, I. G., A convergent adaptive methodfor elliptic eigenvalue problems, SIAM J. Numer. Anal. 47 (2009), pp. 10671091.CrossRefGoogle Scholar
[14]Krřížek, M. and Neittaanmäki, P., Mathematical and numerical modelling in electrical engineering: Theory and applications, Kluwer Academic Publishers (1996).Google Scholar
[15]Milner, F.A. and Park, E.-J., A mixed finite element methodfor a strongly nonlinear second-order elliptic problem, Math. Comp. 64 (1995), No. 211, pp. 973988.CrossRefGoogle Scholar
[16]Morin, P., Siebert, K. G., and Veeser, A., A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci. 18 (2008), no. 5, pp. 707737.CrossRefGoogle Scholar
[17]Garau, E.M., Morin, P. and Zuppa, C., Quasi-optimal convergence of an inexact adaptive finite element method, in preparation.Google Scholar
[18]Nochetto, R.H., Siebert, K. G., Veeser, A., Theory of Adaptive Finite Element Methods: An Introduction, In Multiscale, Nonlinear and Adaptive Approximation: Dedicated to Wolfgang Dahmen on the Occasion of his 60th Birthday, DeVore, R., Kunoth, A., eds., Springer, 2009.Google Scholar
[19]Padra, C., A posteriori error estimators for nonconforming approximation of some quasi-Newtonian flows, SIAM J. Numer. Anal. 34 (1997), no. 4, pp. 16001615.CrossRefGoogle Scholar
[20]Park, Eun-Jae, Mixedfinite element methods for nonlinear second-order elliptic problems, SIAM J. Numer. Anal. 32 (1995), no. 3, pp. 865885.CrossRefGoogle Scholar
[21]Schmidt, A. and Siebert, K. G., Design of adaptive finite element software, Lecture Notes in Computational Science and Engineering, vol. 42, Springer-Verlag, Berlin, 2005, The finite element toolbox ALBERTA, With 1 CD-ROM (Unix/Linux).Google Scholar
[22]Stevenson, R., Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, pp. 245269.CrossRefGoogle Scholar
[23]Stevenson, R., The completion of locally refined simplicial partitions created by bisection, Math. Comp. 77 (2008), no. 261, pp. 227241 (electronic).CrossRefGoogle Scholar
[24]Zarantonello, E., Solving functional equations by contractive averaging, Mathematics Research Center Report #160 (1960), Madison, WI.Google Scholar
[25]Zeidler, E., Nonlinear functional analysis and its applications. II/B, Springer-Verlag, New York, (1990), Nonlinear monotone operators, Translated from the German by the author and Boron., Leo F.Google Scholar