No CrossRef data available.
Article contents
Discrete Maximum Principle and a Delaunay-Type Mesh Condition for Linear Finite Element Approximations of Two-Dimensional Anisotropic Diffusion Problems
Published online by Cambridge University Press: 28 May 2015
Abstract
A Delaunay-type mesh condition is developed for a linear finite element approximation of two-dimensional anisotropic diffusion problems to satisfy a discrete maximum principle. The condition is weaker than the existing anisotropic non-obtuse angle condition and reduces to the well known Delaunay condition for the special case with the identity diffusion matrix. Numerical results are presented to verify the theoretical findings.
Keywords
- Type
- Research Article
- Information
- Numerical Mathematics: Theory, Methods and Applications , Volume 4 , Issue 3 , August 2011 , pp. 319 - 334
- Copyright
- Copyright © Global Science Press Limited 2011
References
[1]Aavatsmark, I., Barkve, T., Bøe, Ø., and Mannseth, T.. Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods. SIAMJ. Sci. Comput, 19:1700–1716 (electronic), 1998.CrossRefGoogle Scholar
[2]Aavatsmark, I., Barkve, T., Bøe, Ø., and Mannseth, T.. Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results. SIAM J. Sci. Comput, 19:1717–1736 (electronic), 1998.CrossRefGoogle Scholar
[3]Brandts, J., Korotov, S., and Kˇrížek, M.. Dissection of the path-simplex in Жn into n path-subsimplices. Lin. Alg. Appl., 421:382–393, 2007.CrossRefGoogle Scholar
[4]Brandts, J., Korotov, S., and Kˇrížek., M.The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem. Lin. Alg. Appl., 429:2344–2357, 2008.CrossRefGoogle Scholar
[5]Burman, E. and Ern, A.. Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes. C. R. Acad. Sci. Paris, Ser.I 338:641–646, 2004.CrossRefGoogle Scholar
[6]Chan, T. F. and Shen, J.. Non-texture inpainting by curvature driven diffusions (CDD). J. Vis. Commun. Image Rep, 12:436–449, 2000.Google Scholar
[7]Chan, T. F., Shen, J., and Vese, L.. Variational PDE models in image processing. Not AMS J., 50:14–26, 2003.Google Scholar
[8]Ciarlet, P. G.. Discrete maximum principle for finite difference operators. Aequationes Math., 4:338–352, 1970.CrossRefGoogle Scholar
[9]Ciarlet, P. G. and Raviart, P.-A.. Maximum principle and uniform convergence for the finite element method. Comput. Meth. Appl. Mech. Eng., 2:17–31, 1973.CrossRefGoogle Scholar
[10]Crumpton, P. I., Shaw, G. J., and Ware, A. F.. Discretisation and multigrid solution of elliptic equations with mixed derivative terms and strongly discontinuous coefficients. J. Comput. Phys., 116:343–358, 1995.CrossRefGoogle Scholar
[11]Drăgănescu, A., Dupont, T. F., and Scott, L. R.. Failure of the discrete maximum principle for an elliptic finite element problem. Math. Comp., 74:1–23, 2004.CrossRefGoogle Scholar
[12]Ern, A. and Guermond, J. L.. Theory and Practice of Finite Elements. Sprigner-Verlag, New York, 2004.CrossRefGoogle Scholar
[13]Ertekin, T., Abou-Kassem, J. H., and King, G. R.. Basic Applied Reservoir Simulation. SPE textbook series, Vol. 7, Richardson, Texas, 2001.Google Scholar
[14]Forsyth, P. A.. A control-volume, finite-element method for local mesh refinement in thermal reservoir simulation. SPE Reservoir Engineering, 5:561–566 (Paper SPE 18415), 1990.CrossRefGoogle Scholar
[15]Gűnter, S. and Lackner, K.. A mixed implicit-explicit finite difference scheme for heat transport in magnetised plasmas. J. Comput. Phys., 228:282–293, 2009.CrossRefGoogle Scholar
[16]Gűnter, S., Lackner, K., and Tichmann, C.. Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas. J. Comput. Phys., 226:2306–2316, 2007.CrossRefGoogle Scholar
[17]Gűnter, S., Yu, Q., Kruger, J., and Lackner, K.. Modelling of heat transport in magnetised plasmas using non-aligned coordinates. J. Comput. Phys., 209:354–370, 2005.CrossRefGoogle Scholar
[18]Karátson, J. and Korotov, S.. Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions. Numer. Math., 99:669–698, 2005.CrossRefGoogle Scholar
[19]Karátson, J. and Korotov, S.. Discrete maximum principles for finite element solutions of some mixed nonlinear elliptic problems using quadratures. J. Comput. Appl. Math., 192:75–88, 2006.CrossRefGoogle Scholar
[20]Karátson, J., Korotov, S., and Kˇrížek, M.. On discrete maximum principles for nonlinear elliptic problems. Math. Comput. Sim., 76:99–108, 2007.CrossRefGoogle Scholar
[21]Karras, D. A. and Mertzios, G. B.. New PDE-based methods for image enhancement using SOM and Bayesian inference in various discretization schemes. Meas. Sci. Technol., 20:104012, 2009.CrossRefGoogle Scholar
[22]Kuzmin, D., Shashkov, M. J., and Svyatskiy, D.. A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems. J. Comput. Phys., 228:3448–3463, 2009.CrossRefGoogle Scholar
[23]Křížek, M. and Lin, Q.. On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math., 3:59–69, 1995.Google Scholar
[24]Le Potier, C.. Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés. C. R. Math. Acad. Sci. Paris, 341:787–792, 2005.CrossRefGoogle Scholar
[25]Le Potier, C.. A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. Int. J. Finite Vol., 6:20, 2009.Google Scholar
[26]Le Potier, C.. Un schéma linéaire vérifiant le principe du maximum pour des opérateurs de diffusion très anisotropes sur des maillages déformés. C. R. Math. Acad. Sci. Paris, 347:105–110, 2009.CrossRefGoogle Scholar
[27]Letniowski, F. W.. Three-dimensional delaunay triangulations for finite element approximations to a second-order diffusion operator. SIAM J. Sci. Stat. Comput., 13:765–770, 1992.CrossRefGoogle Scholar
[28]Li, X. P. and Huang, W.. An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems. J. Comput. Phys. 229 (2010), 8072–8094. (arXiv:1003.4530v2)CrossRefGoogle Scholar
[29]Li, X. P., Svyatskiy, D., and Shashkov, M.. Mesh adaptation and discrete maximum principle for 2D anisotropic diffusion problems. Technical Report LA-UR 10-01227, Los Alamos National Laboratory, Los Alamos, NM, 2007.Google Scholar
[30]Lipnikov, K., Shashkov, M., Svyatskiy, D., and Vassilevski, Yu.. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys., 227:492–512, 2007.CrossRefGoogle Scholar
[31]Liska, R. and Shashkov, M.. Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems. Comm. Comput. Phys., 3:852–877, 2008.Google Scholar
[32]Mlacnik, M. J. and Durlofsky, L. J.. Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients. J. Comput. Phys., 216:337–361, 2006.CrossRefGoogle Scholar
[33]Mumford, D. and Shah, J.. Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math, 42:577–685, 1989.CrossRefGoogle Scholar
[34]Nishikawa, K. and Wakatani, M.. Plasma Physics. Springer-Verlag Berlin Heidelberg, New York, 2000.CrossRefGoogle Scholar
[35]Perona, P. and Malik, J.. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intel., 12:629–639, 1990.CrossRefGoogle Scholar
[36]Sharma, P. and Hammett, G.W.. Preserving monotonicity in anisotropic diffusion. J. Comput. Phys., 227:123–142, 2007.CrossRefGoogle Scholar
[37]Sommerville, D. M. Y.. An Introduction to the Geometry of n Dimensions. Methuen & Co. LTD., London, 1929.Google Scholar
[39]Stoyan, G.. On a maximum principle for matrices, and on conservation of monotonicity. With applications to discretization methods. Z. Angew. Math. Mech., 62:375–381, 1982.CrossRefGoogle Scholar
[40]Stoyan, G.. On maximum principles for monotone matrices. Lin. Alg. Appl., 78:147–161, 1986.CrossRefGoogle Scholar
[41]Strang, G. and Fix, G. J.. An Analysis of the Finite Element Method. Prentice Hall, Englewood Cliffs, NJ, 1973.Google Scholar
[42]Varga, R. S.. On a discrete maximum principle. SIAM J. Numer. Anal., 3:355–359, 1966.CrossRefGoogle Scholar
[43]Weickert, J.. Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart, Germany, 1998.Google Scholar
[44]Xu, J. and Zikatanov, L.. A monotone finite element scheme for convection-diffusion equations. Math. Comput., 69:1429–1446, 1999.CrossRefGoogle Scholar