Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-30T08:24:21.108Z Has data issue: false hasContentIssue false

Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat

Published online by Cambridge University Press:  01 April 2000

J. H. PENG
Affiliation:
Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
T. FAHIMA
Affiliation:
Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
M. S. RÖDER
Affiliation:
Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
Y. C. LI
Affiliation:
Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
A. GRAMA
Affiliation:
Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
E. NEVO
Affiliation:
Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
Get access

Abstract

A new stripe rust resistance gene, YrH52, derived from the unique Mount Hermon population of wild emmer wheat (Triticum dicoccoides) in Israel, was previously located on chromosome 1B. The main objectives of the present study were to increase marker density in the vicinity of the YrH52 gene using additional microsatellite markers, and to evaluate the accuracy and efficiency of marker-assisted selection on this gene in the F2 generation. By means of 70 additional microsatellite primer pairs, 150 individuals of the F2 mapping population were genotyped. Among 202 marker loci, 20 were found to be linked to the YrH52 gene with log-likelihood (LOD) scores ranging from 3.84 to 58.82, and linkage distances ranging from 0.33 to 41.39 cM. A genetic map was constructed of chromosome 1B, consisting of 23 markers and the YrH52 gene, with a total map length of 149.5 cM. Most of the markers were located in the region close to YrH52, which was flanked by Xgwm413 and Xgwm273a with map distances of 1.3 and 2.7 cM, respectively. The accuracy and efficiency of marker-assisted selection were calculated as AMAS and EMAS, respectively, for homozygous resistant genotypes of YrH52 gene in the F2 generation. AMAS and EMAS for homozygous resistant genotypes of the YrH52 gene in the F2 generation showed linear and significant negative correlation with the map distance between marker and target gene or between the two bracketing markers. It was concluded that the YrH52 region on chromosome 1B is significantly more enriched by microsatellite markers than the previously published map; that a single microsatellite marker is efficient for marker-assisted selection of homozygous resistant genotypes of YrH52 gene in the F2 generation when the map distance is <5.0 cM; and that when two markers are used AMAS can be dramatically improved and becomes relatively stable, whereas EMAS will not be obviously improved and will still vary linearly with map distance.

Type
Research Article
Copyright
© Trustees of the New Phytologist 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)