Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T18:41:13.028Z Has data issue: false hasContentIssue false

Towards an improved lithostratigraphic subdivision of the Chalk Group in the Netherlands North Sea area - A seismic stratigraphic approach

Published online by Cambridge University Press:  01 April 2016

A.S. van der Molen*
Affiliation:
Faculty of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands
Th.E. Wong
Affiliation:
Faculty of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands TNO Built Environment and Geosciences - National Geological Survey, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
*
3Corresponding author
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the Netherlands North Sea area, the Chalk Group has thus far been subdivided into the Cenomanian Texel Formation, the Turonian to Maastrichtian Ommelanden Formation and the Danian Ekofisk Formation. This paper describes the attempt to arrive at a more detailed lithostratigraphic subdivision for this area, particularly of the Ommelanden Formation. To this end, a seismic stratigraphic analysis was carried out on a regional 2D and 3D seismic dataset. The Chalk Group was subdivided into eleven seismic stratigraphic sequences, named CK1 through CK11, based on the mapping and correlation of unconformities. The identified seismic sequence boundaries were used as the main chronostratigraphic markers in the Chalk Group interval. The seismic dataset was subsequently expanded with well log data of 45 boreholes. These were tied to the seismic dataset by constructing a synthetic seismogram for each borehole, after which the seismic sequence boundaries were noted and correlated on the logs. Finally, micropaleonthological data available in 15 boreholes were used to date the seismic sequences. The sequences were interpreted to be of Cenomanian (CK1), Turonian (CK2), Coniacian (CK3), Santonian (CK4), Early Campanian (CK5; CK6), Middle to Late Campanian (CK7), Early Maastrichtian (CK8; CK9), Late Maastrichtian (CK10) and Danian (CK11) age. The seismic units recognised in this study were compared with formal lithostratigraphic units defined in the Chalk Group in the surrounding North Sea sectors. Based on this comparison, a revision of the formal lithostratigraphic scheme, recognising Tor Formation and Herring Formation equivalents, is suggested for the Netherlands North Sea area.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Andersen, C. Clausen, C.K., Möller, C., Nygaard, E. & Stouge, S., 1990. Intra-chalk Study, EFP-87: A Multidisciplinary Breakdown. Geological Survey of Denmark (Copenhagen): 30 pp.Google Scholar
Anderson, J.K., 1999. The capabilities and challenges of the seismic method in chalk exploration. In: Fleet, A.J. & Boldy, S.A.R. (eds): Petroleum Geology of Northwest Europe: proceedings of the 5th Conference. The Geological Society of London (London): 939949.Google Scholar
Bergen, J.A. & Sikora, P.J., 1999. Microfossil diachronism in southern Norwegian North Sea chalks; Valhall and Hod fields: In: Jones, R.W. & Simmons, M.D. (eds): Biostratigraphy in production and development geology, Geological Society Special Publications 152, The Geological Society of London (London): 85111.Google Scholar
Bertram, G.T. & Milton, N.J., 1996. Seismic stratigraphy. In: Emery, D. & Meyers, K.J. (eds): Sequence Stratigraphy. Blackwell Science (Oxford): 297 pp.Google Scholar
Bless, M.J.M., Dusar, M. & Streel, M., 1987. Some aspects of the Late Cretaceous in NW Europe. Annales de la Société Géologique de Belgique 109: 84 pp.Google Scholar
Bramwell, N.P., Caillet, G., Meciani, L., Judge, N., Green, A. & Adam, P., 1999. Chalk exploration, the search for a subtle trap. In: Fleet, A.J. & Boldy, S.A.R. (eds): Petroleum Geology of Northwest Europe: proceedings of the 5th Conference. Geological Society of London (London): 911937.Google Scholar
Brasher, J.E. & Vagle, K.R., 1996. Influence of lithofacies and diagenesis on Norwegian North Sea chalk reservoirs. AAPG Bulletin 80: 746769.Google Scholar
Campbell, S.J.D. & Gravdal, N., 1995. The prediction of high porosity chalks in the East Hod Field. Petroleum Geoscience 1: 5769.Google Scholar
De Jager, J., 2003. Inverted basins in the Netherlands, similarities and differences. Netherlands Journal of Geosciences/Geologie en Mijnbouw 82: 355366.Google Scholar
Dronkers, A.J. & Mrozek, F.J., 1991. Inverted basins of the Netherlands. First Break 9: 409425.Google Scholar
Eberli, G.P., Anselmetti, F.S. Kroon, D., Sato, T. & Wright, J.D., 2002. The chronostratigraphic significance of seismic reflections along the Bahamas Transect. Marine Geology 185: 117.Google Scholar
Felder, W.M., 1975. Lithostratigraphie van het Boven-Krijt en het Dano Montien in Zuid Limburg en het aangrenzende gebied. In: Zagwijn, W.H. & Van Staalduinen, C.J. (eds.): Toelichting bij geologische overzichtskaarten. Rijks Geologische Dienst (Haarlem): 6372.Google Scholar
Felder, P.J., Bless, M.J.M., Demyttenaere, R., Dusar, M., Meessen, J.P.M.T. & Robaszynski, F., 1985. Upper Cretaceous to Early Tertiary deposits (Santonian-Paleocene) in Northeastern Belgium and South Limburg (the Netherlands) with reference to the Campanian-Maastrichtian. Belgian Geological Survey Professional Paper 214: 151 pp.Google Scholar
Gras, R. & Geluk, M., 1999. Late Cretaceous - Early Tertiary sedimentation and tectonic inversion in the southern Netherlands. Geologie en Mijnbouw 78: 119.Google Scholar
Hancock, J.M., 1975. The Petrology of the Chalk. Proceedings of the Geological Association 86: 499535.Google Scholar
Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., De Graciansky, P.C. & Vail, P., 1998. Chart 3: Cenozoic Biochronostratigraphy and Chart 5: Cretaceous Biochronostratigraphy. In: De Graciansky, P.C., Hardenbol, J., Jacquin, T. & Vail, P. (eds): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, SEPM Special Publication 60. Society of Economic Paleontologists and Mineralogists (Tulsa): 786 pp.Google Scholar
Hatton, I.R., 1986. Geometry of allochtonous Chalk Group members, Central Through, North Sea. Marine and Petroleum Geology 3: 7998.Google Scholar
Herngreen, G.F.W., Eillebrecht, A.J., Gortemaker, R.E., Remmelts, G., Schuurman, H.A.H.M. & Verbeek, J.W., 1996. Upper Cretaceous Chalk Group stratigraphy near the isle of Texel, the Netherlands (a multidisciplinary approach). Medelingen Rijks Geologische Dienst 56: 63 pp.Google Scholar
Isaksen, D. & Tonstad, K., 1989. A revised Cretaceous and Tertiary lithostratigraphic nomenclature for the Norwegian North Sea. NPD Bulletin 5: 59 pp.Google Scholar
Johnson, H. & Lott, G.K., 1993. Lithostratigraphic nomenclature of the UK North Sea Volume 2, Cretaceous of the Central and Northern North Sea. British Geological Survey (Nottingham): 169 pp.Google Scholar
Kennedy, W.J., 1987. Sedimentology of Late Cretaceous - Palaeogene Chalk reservoirs, North Sea Central Graben. In: Brooks, J. & Glennie, K. (eds): Petroleum Geology of North West Europe. Graham & Trotham (London): 469481.Google Scholar
King, C. 1989. Cenozoic of the North Sea. In: Jenkins, D.G. & Murray, J.W. (eds): Stratigraphic atlas of fossil foraminifera. Ellis Horwood (Chichester): 418490.Google Scholar
King, C. Bailey, H.W., Burton, C., & King, A.D., 1989. Cretaceous of the North Sea. In: Jenkins, D.G. & Murray, J.W. (eds): Stratigraphic atlas of fossil foraminifera. Ellis Horwood (Chichester): 372418.Google Scholar
Koch, W., 1977. Biostratigraphie in der Oberkreide und Taxonomie von Foraminiferen. In: Baldschuhn, R., Jaritz, W. & Koch, W. (eds.): Stratigraphie der Oberkreide in Nordwestdeutschland (Pompeckjsche Scholle). Geologisches Jahrbuch A38: 11123.Google Scholar
Lieberkind, K., Bang, I., Mikkelsen, N. & Nygaard, E., 1982. Late Cretaceous and Danian limestone. In: Michelsen, O.O. (ed.): Geology of the Danish Central Graben, Series B, No. 8. Geological Survey of Denmark (Copenhagen): 4962.Google Scholar
Mitchum, R.M jr., 1977. Glossary of Terms used in Seismic Stratigraphy. In: Payton, C.E. (ed.): Seismic Stratigraphy - Applications to hydrocarbon exploration, AAPG Memoir 26. American Association of Petroleum Geologists (Tulsa): 205212.Google Scholar
Mitchum, R.M jr., Vail, P.R. & Sangree, J.B., 1977. Seismic stratigraphy and Global Changes of Sea Level, Part 6: Stratigraphic Interpretation of Seismic Reflection Patterns in Depositional Sequences. In: Payton, C.E. (ed.): Seismic Stratigraphy - Applications to hydrocarbon exploration, AAPG Memoir 26. American Association of Petroleum Geologists (Tulsa): 117135.Google Scholar
Mitchum, R.M. Jr., Vail, P.R., 1977. Seismic stratigraphy and Global Changes of Sea Level, Part 7: Seismic Stratigraphic Interpretation Procedure. In: Payton, C.E. (ed.): Seismic Stratigraphy - Applications to hydrocarbon exploration, AAPG Memoir 26. American Association of Petroleum Geologists (Tulsa): 135145.Google Scholar
Nygaard, E., Andersen, C. Möller, , Clausen, C.K. & Stouge, S., 1989. Integrated multidisciplinary stratigraphy of the Chalk Group: an example from the Danish Central Through In: Chalk: Proceedings of the International Chalk Symposium held at Brighton Polytechnic on 4–7 September 1989. Thomas Telford Ltd. (London): 195201.Google Scholar
Ogg, J.G., Agterberg, F.P. & Gradstein, F.M., 2004. The Cretaceous Period. In: Gradstein, F.M., Ogg, J.G. & Smith, A.G. (eds): A Geological Time Scale 2004. Cambridge University Press (Cambridge): 589 pp.Google Scholar
Rider, M.H., 1996. The geological interpretation of well logs. Whittles Publishing (London): 245 pp.Google Scholar
Scholle, P.A., 1977. Chalk diagenesis and its relation to petroleum exploration: oil from chalks, a modern miracle?. AAPG Bulletin 61: 9821009.Google Scholar
Surlyk, F., Dons, T., Clausen, C.K. & Highham, J., 2003. Upper Cretaceous. In: Evans, D., Graham, C. Armour, A. & Bathurst, P. (eds): The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea. The Geological Society of London (London): 213233.Google Scholar
Vail, P.R., Mitchum, R.M. Jr., & Thomson, S. IIII, 1977. Seismic stratigraphy and Global Changes of Sea Level, Part 3: Relative Changes of Sea Level from Coastal Onlap. in: Payton, C.E. (ed.): Seismic Stratigraphy - Applications to hydrocarbon exploration, AAPG Memoir 26. American Association of Petroleum Geologists (Tulsa): 99117.Google Scholar
Vail, P.R., Todd, R.G. & Sangree, J.B., 1977. Seismic stratigraphy and Global Changes of Sea Level, Part 5: Chronostratigraphic Significance of Seismic Reflections. In: Payton, C.E. (ed.): Seismic Stratigraphy - Applications to hydrocarbon exploration, AAPG Memoir 26. American Association of Petroleum Geologists (Tulsa): 99117.Google Scholar
Van Adrichem Boogaert, H.A. & Kouwe, W.F.P. (eds), 1994. Stratigraphic nomenclature: section H - Upper Cretaceous and Danian (Chalk Group), Mededelingen Rijks Geologische Dienst 50, Rijks Geologische Dienst (Haarlem).Google Scholar
Van der Molen, A.S., Dudok van Heel, H.W., Wong, Th.E., 2005, The influence of tectonic regime on chalk deposition: examples of the sedimentary development and 3D-seismic stratigraphy of the Chalk Group in the Netherlands offshore area. Basin Research 17: 6381.Google Scholar
Van Wijhe, D.H., 1987. Structural evolution of inverted basins in the Dutch offshore. Tectonophysics 137: 171219.CrossRefGoogle Scholar
Vejbæk, O.V. & Andersen, C., 2003. Post mid-Cretaceous inversion tectonics in the Danish Central Graben - Regionally synchronous tectonic events? Bulletin of the Geological Society of Denmark 49: 129144.Google Scholar
Ziegler, P.A., 1990. Geological atlas of western and central Europe. Shell Internationale Petroleum Maatschappij (The Hague): 237 pp.Google Scholar