Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T19:59:22.261Z Has data issue: false hasContentIssue false

Stratigraphic analysis and paleoenvironmental implications of the Wijchen Member in the lower Rhine-Meuse Valley of the Netherlands

Published online by Cambridge University Press:  01 April 2016

W.J. Autin*
Affiliation:
Department of the Earth Sciences, SUNY College at Brockport, Brockport, New York 14420, USA. Email:dirtguy@esc.brockport.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Late Pleistocene Wijchen Member (WM) and its informal stratigraphic precursors have been recognized for decades in the Rhine-Meuse Valley of the Netherlands. Although the WM marks the top of the Kreftenheye Formation (KF) at the boundary between Pleistocene and Holocene lithofacies and provides a confining bed for the regional alluvial aquifer, significant issues remain regarding WM depositional environment and processes of sedimentation. Regional WM chronology suggests a time-transgressive, millennium scale response of the Rhine River to Lateglacial climate oscillations. This paper compares interpretations of sedimentation process, stratigraphic pattern, and paleoenvironmental significance to prevailing viewpoints on the WM mode of origin.

A flood basin in the Over Betuwe between the channel belts of the Neder Rijn and River Waal is investigated to characterize WM stratigraphy. The KF braided stream deposits (Kb) form a regionally extensive sandy to gravelly lithofacies. As Kb aggradation ceased, fluvial channels incised into local braid plain swales. The WM was deposited during episodes of fluvial activity as a suspended load mud drape across segments of the abandoned braid plain. The WM is a gray silty lithofacies that also contains local admixtures of sand. Explanations for the origin of the sand admixed into the mud include variability in hydrodynamic load across the flood plain, eolian mixing, and/or biogenic mixing. In the study area, eolian deposition of sand onto a wet flood plain surface is the most probable cause for the admixed sand fraction. Pedogenesis of the WM in the study area is limited to gleying under reduced wetland conditions and the development of organic rich vegetation horizons that formed on top of relatively unaltered fluvial strata. Similar reduced soil properties and limited pedogenic development occur downdip to the present coast, but updip of the study area, the WM is the parent material for poorly drained to well drained and oxidized profiles that range from Entisols to weakly expressed Alfisols.

The presence of pumice granules in Kb deposits of the study area indicate that channel belt deposition continued after the Laacher See volcanic eruption in Germany at ~12,900 cal yr. Deposition of the WM occurred episodically throughout the Lateglacial and terminated by the early Holocene. The time interval between the end of WM deposition and subsequent burial by flood basin peat reflects a duration of exposure of at least 3500 yrs. Since regional water table rise affected the area ~5000 cal yrs ago, the early Holocene water table must have been maintained by spring fed ground water sources from nearby ice pushed ridges.

Deposition of the WM is associated with transitional braided to meandering fluvial channels during times when the Rhine-Meuse Valley experienced a sensitive response to rapid climate change. The WM is regionally time transgressive and probably formed during flood plain transitions between permafrost and base-flow driven hydrologic regimes. Regional landscape dynamics suggest that WM deposition and subsequent preservation was driven by fluctuations of the southern limit of permafrost during Northern Hemisphere deglaciation.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2008

References

Berendsen, H.J.A., 2005. De Laaglandgenese databank. Utrecht University, Faculty of Geosciences, Department of Physical Geography: CD-ROM.Google Scholar
Berendsen, H.J.A., Hoek, W.Z. & Schorn, E.A., 1995. Late Weichselian and Holocene River Channel Changes of the Rivers Rhine and Meuse in the Central Netherlands (Land Van Maas en Waal). Paläoklimaforschung 14: 151171.Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2001. Palaeogeographic development of the Rhine Meuse delta, the Netherlands. Assen, Koninklijke Van Gorcum: 268 p.Google Scholar
Berendsen, H.J.A., Faessen, E.L.J.H., Hesselink, A.W. & Kempen, H.F.J., 2001. Zand in banen - Zanddieptekaarten van het Gelderse rivierengebied, met inbegrip van de uiterwaarden. Arnhem, Provincie Gelderland: Second revised edition.Google Scholar
Bogaard, P.V.D. & Schmincke, H-U., 1985. Laacher See Tephra: A widespread isochronous late Quaternary tephra layer in central and northern Europe. Geological Society of America Bulletin 96: 15541571.Google Scholar
Bohncke, S., Vandenberghe, J. & Huijzer, A.S., 1993. Periglacial palaeoenvironment during the Late Glacial in the Maas valley, The Netherlands. Geologie en Mijnbouw 72: 193210.Google Scholar
Boenigk, W. & Frechen, M., 2006. The Pliocene and Quaternary fluvial archives of the Rhine system. Quaternary Science Reviews 25: 550574.Google Scholar
Busschers, F.S., 2008, Unraveling the Rhine, response of a fluvial system to climate change, sea-level oscillation and glaciation. Published Ph.D. dissertation, Vrije Universiteit Amsterdam / TNO Built Environment and Geosciences, Geology of the Netherlands 1: 180 pp.Google Scholar
Busschers, F.S., Kasse, C., van Balen, R.T., Vandenberghe, J., Cohen, K. M., Weerts, H.J.T., Wallinga, J., Johns, C., Cleveringa, P. & Bunnik, F.P.M., 2007. Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and glacioisostacy. Quaternary Science Reviews 26: 32163248.Google Scholar
Busschers, F.S., Weerts, H.J.T., Wallinga, J., Cleveringa, P., Kasse, C., De Wolf, H. & Cohen, K.M., 2005. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits - fluvial response to climate change, sea-level fluctuation and glaciation. Netherlands Journal of Geosciences 84: 2541.Google Scholar
Cohen, K.C., 2003. Differential subsidence in a coastal prism: Late-Glacial - Holocene tectonics in the Rhine-Meuse delta. Ph.D. Thesis Utrecht. Nederlandse Geografische Studies 316: 172 pp.Google Scholar
Dambeck, R. & Thiemeyer, H., 2002. Fluvial history of the northern Upper Rhine River (southeastern Germany) during the Lateglacial and Holocene times. Quaternary International 93: 5363.Google Scholar
Doeglas, D.J., 1951. Meanderende en verwilderde rivieren. Geologie en Mijnbouw, N.S. 13: 297299.Google Scholar
Evans, M.E. & Heller, F., 2003. Environmental magnetism - Principles and applications of enviromagnetics. Academic Press, International Geophysical Series 86: 299 pp.Google Scholar
Fairbanks, R.G., 2008. Radiocarbon Calibration. Lamont Doherty Earth Observatory, Columbia University: http://radiocarbon.ldeo.columbia.edu/research/radiocarbon.htm (accessed on Internet 20 March 2008).Google Scholar
Friedrich, M., Kramer, B., Spark, M., Hoffmann, J. & Kaiser, K.F., 1999. Paleoenvironmental and radiocarbon calibration as derived from Late glacial / Early Holocene tree-ring chronologies. Quaternary International 61: 2739.Google Scholar
Gouw, M.J.P. & Erkens, G., 2007. Architecture of the Holocene Rhine-Meuse delta (the Netherlands) - A result of changing external controls. Netherlands Journal of Geosciences 86: 2354.Google Scholar
Hesselink, A.W., Weerts, H.J.T. & Berendsen, H.J.A., 2003. Alluvial architecture of the human-influenced River Rhine, the Netherlands. Sedimentary Geology 161: 229248.Google Scholar
Hoek, W.Z., 1997a. Palaeogeography of Lateglacial Vegetations: Aspects of Lateglacial and Early Holocene vegetation, the abiotic landscape and climate of the Netherlands, Ph. D. Thesis, Free University, Amsterdam. Netherlands Geographical Studies 230: 160 pp.Google Scholar
Hoek, W.Z., 1997b. Atlas to Palaeogeography of Lateglacial Vegetations: Maps of the Lateglacial and Early Holocene landscape and vegetation of the Netherlands, with an extensive review of Palynological data. Ph. D. Thesis, Free University, Amsterdam. Netherlands Geographical Studies 231: 176 pp.Google Scholar
Hoek, W.Z. & Bohncke, S J.P., 2002. Climatic and environmental events over the Last Termination as recorded in The Netherlands: A review. Netherlands Journal of Geosciences 81: 123137.Google Scholar
Houben, P., 2003. Spatio-temporally variable response of fluvial systems to Late Pleistocene climate change: a case study from central Germany. Quaternary Science Reviews 22: 21252140.Google Scholar
Huisink, M., 1999. Changing river styles in response to climate change: Examples from the Maas and the Vecht during the Weichselian Pieni- and Lateglacial. Ph.D. Thesis, Free University, Amsterdam.Google Scholar
Kasse, C., Bohncke, S. & Vandenberghe, J., 1995. Climate change and fluvial dynamics of the Maas during the Late Weichselian and Early Holocene. Paläoklimsforschung 14: 123150.Google Scholar
Kasse, C., Hoek, W.Z., Bohncke, S.J.P., Konert, M., Weijers, J.W.H., Cassee, M.L. & Van der Zee, R.M., 2005. Late Glacial fluvial response of the Niers- Rhine (western Germany) to climate and vegetation change. Journal of Quaternary Science 20: 377394.Google Scholar
Koenigs, F.F.R., 1949. Een bodemkartering van de omgeving van Azewijn - Verslagen van Landbouwkundige Onderzoekingen 54.17: 143.Google Scholar
Makaske, B. & Nap, R.L., 1995. A transition from a braided to a meandering channel facies, showing inclined heterolithic stratification (Late Weichselian, central Netherlands). Geologie en Mijnbouw 74: 18.Google Scholar
Miedema, R., 1987. Soil formation, microstructure and physical behaviour of Late Weichselian and Holocene Rhine deposits in the Netherlands. Ph.D. Thesis, Wageningen: 339 pp.Google Scholar
Murray, A.S. & Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377381.Google Scholar
Park, C. & Schmincke, H.-U., 1997. Lake formation and catastrophic dam burst during the Late Pleistocene Laacher See eruption (Germany). Naturwissenschaften 84: 521525.Google Scholar
Pons, L.J., 1957. De geologie, de bodemvorming en de waterstaatkundige ontwikkeling van het Land van Maas en Waal en een gedeelte van het Rijk van Nijmegen. Ph.D. Thesis, Wageningen. Bodemkundige Studies 3.Google Scholar
Pons, L.J., 1966. De Bodemkartering van het Land van Maas en Waal en een gedeelte van het Rijk van Nijmegen. Verslagen van Landbouwkundige Onderzoekingen 646, Wageningen: Pudoc. De Bodemkartering van Nederland, deel 22, Wageningen: Stiboka, 129 pp.Google Scholar
Pons, L.J. & Schelling, J., 1951. De laatglaciale afzettingen van de Rijn en de Maas. Geologie en Mijnbouw 13: 293297.Google Scholar
Renssen, H., 2001. The climate in The Netherlands during the Younger Dryas and Preboreal: means and extremes obtained with an atmospheric general circulation model. Netherlands Journal of Geosciences 80: 1930.Google Scholar
Renssen, H. & Vandenberghe, J., 2003. Investigation of the relationship between permafrost distribution in NW Europe and extensive winter sea-ice cover in the North Atlantic Ocean during the cold phases of the Last Glaciation. Quaternary Science Reviews 22: 209223.Google Scholar
Renssen, H., Isarin, R.F.B. & Vandenberghe, J., 2002. Thermal gradients in Europe during the last glacial-interglacial transition. Netherlands Journal of Geosciences 81: 113122.Google Scholar
Ruegg, G.H.J., 1994. Alluvial architecture of the Quaternary Rhine-Meuse river system in the Netherlands. Geologie en Mijnbouw 72: 321330.Google Scholar
Schmincke, H.-U., Park, C. & Harms, E., 1999. Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900a BP. Quaternary International 19: 6172.Google Scholar
Soil Survey Staff, 1999. Soil Taxonomy. U.S. Department of Agriculture Handbook 436, Second Edition: 869 pp.Google Scholar
Tebbens, L.A., 1999. Late Quaternary evolution of the Meuse fluvial system and its sediment composition. Ph.D. Thesis, Wageningen: 155 pp.Google Scholar
Tebbens, L.A., Veldkamp, A., Westerhoff, W. & Kroonenberg, S.B., 1999. Fluvial incision and channel downcutting as a response to Late glacial and Early Holocene climate change: the lower reach of the River Meuse (Maas), The Netherlands. Journal of Quaternary Science 14: 5975.Google Scholar
Teunissen, D., 1990. Palynologisch onderzoek in het oostelijk rivierengebied een overzicht. Mededelingen van de de afdeling Biogeologie van de Discipline Biologie van de Katholieke Universiteit van Nijmegen 16: 1163.Google Scholar
Teunissen, D. & De, Man, 1981. Enkele palynologische waarnemingen aan het kleidek van de Formatie van Kreftenheye bij Nijmegen, Mededelingen van de afdeling Biogeologie van de sectie Biologie van de Katholieke Univeisiteit van Nijmegen. Mededeling 12: 20 pp.Google Scholar
Teunissen, D. & Van Oorschot, H.G.C.M., 1967. De laatglaciale geschiedenis van het verwilderde riviersysteem ten zuidwesten van Nijmegen. Geologie en Mijnbouw 46: 463470.Google Scholar
Thompson, M. & Oldfield, F., 1986. Environmental magnetism. Allen and Unwin, London: 227 pp.Google Scholar
Törnqvist, T.E., 1993. Fluvial sedimentary geology and chronology of the Holocene Rhine-Meuse delta, the Netherlands. Ph.D. Thesis, Utrecht University: 169 pp.Google Scholar
Törnqvist, T.E., 1998. Longitudinal profile evolution of the Rhine-Meuse system during the last deglaciation: interplay of climate change and glacio-eustasy? Terra Nova 10: 1115.Google Scholar
Törnqvist, T.E., Weerts, H.J.T. & Berendsen, H.J.A., 1994. Definition of two new members in the upper Kreftenheye and Twente Formations (Quaternary, the Netherlands): a final solution to persistent confusion? Geologie en Mijnbouw 72: 251264.Google Scholar
Törnqvist, T.E., Wallinga, J., Murray, A.S., De Wolf, H., Cleveringa, P. & De Gans, W., 2000. Response of the Rhine Meuse system (west central Netherlands) to the last Quaternary glacio eustatic cycles: a first assessment. Global and Planetary Change 27: 89111.Google Scholar
Törnqvist, T.E., Wallinga, J. & Busschers, F.S., 2003. Timing of the last sequence boundary in a fluvial setting near the highstand shoreline - Insights from optical dating. Geology 31: 279282.Google Scholar
Van de Meene, E.A., 1977. Toelichtingen bij de geologische kaart van Nederland, schaal 1 : 50.000, blad Arnhem Oost (400). Haarlem: Rijks Geologische Dienst.Google Scholar
Vandenberghe, J., 1995. Timescales, climate, and river development. Quaternary Science Reviews 14: 631638.CrossRefGoogle Scholar
Vandenberghe, J., 2003. Climate forcing of fluvial system development: an evolution of ideas. Quaternary Science Reviews 22: 20532060.Google Scholar
Van Dijk, G.J., Berendsen, H.J.A. & Roeleveld, W., 1991. Holocene water level development in the Netherlands’ river area; implications for sea-level reconstruction. Geologie en Mijnbouw 70: 311326.Google Scholar
Verbraeck, A., 1984. Toelichtingen bij de Geologische kaart van Nederland, schaal 1 : 50.000, bladen Tiel West (39W) en Tiel Oost (390). Haarlem, Rijks Geologische Dienst.Google Scholar
Wallinga, J., 2001. The Rhine-Meuse system in a new light: optically stimulated luminescence dating and its application to fluvial deposits. Ph.D. Thesis, Utrecht University: 180 pp.Google Scholar
Wallinga, J., Murray, A.S. & Bøtter Jensen, L., 2002. Measurement of the dose in quartz in the presence of feldspar contamination. Radiation Protection Dosimetry 101: 367370.Google Scholar
Wallinga, J., Törnqvist, T.E., Busschers, F.S. & Weerts, H.J.T., 2004. Allogenic forcing of the late Quaternary Rhine-Meuse fluvial record: the interplay of sea-level change, climate change and crustal movements. Basin Research 16: 535547.Google Scholar
Weerts, H.J.T., 1996. Complex confining layers: Architecture and hydraulic properties of Holocene and Late Weichselian deposits in the fluvial Rhine-Meuse delta, the Netherlands. Ph. D. Thesis, Utrecht University: 189 pp.Google Scholar
Woo, M-K. & Thorne, R., 2003. Streamflow in the Mackenzie Basin, Canada. Arctic 56: 328340.Google Scholar
Zonneveld, J.I.S., 1958. Litho-stratigrafische eenheden in het Nederlandse Pleistoceen. Mededelingen van de Geologische Stichting, N.S. 12: 3164.Google Scholar