Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-04T01:33:08.588Z Has data issue: false hasContentIssue false

Soil formation in Late Glacial Meuse sediments related to the Peel Boundary Fault activity

Published online by Cambridge University Press:  01 April 2016

R. Miedema*
Affiliation:
Wageningen University, Laboratory for Soil Science and Geology, P.O. Box 37, 6700 AA Wageningen, The Netherlands; e-mail:rienk.miedema@alg.osa.wau.nl
T. Jongmans
Affiliation:
Wageningen University, Laboratory for Soil Science and Geology, P.O. Box 37, 6700 AA Wageningen, The Netherlands; e-mail:rienk.miedema@alg.osa.wau.nl
*
*corresponding author
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Micromorphological studies relating the soil formation history (processes and timing) to activity events of the Peel Boundary Fault (PBF) showed rotation features (circular distribution pattern of sand grains) in mechanically displaced rounded fragments of Bt bands. These features are interpreted as being caused by ‘mudflow’ during active faulting event (PBF event F2). The micromorphological interpretation of Late Weichselian soil formation (clay illuviation, degradation features and offsetting of Bt bands) agrees with the hypothesized 3 PBF periods of fault activity events (Fl, F2 and F3).

Type
Special section: Palaeosis ECGS/CEGS additional papers
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Brinkman, R. 1970. Ferrolysis, a hydromorphic soil forming process. Geoderma 3, 199–206.Google Scholar
Brinkman, R.A.G. Jongmans, R. Miedema, and Maaskant, P. 1973. Clay decomposition in seasonally wet, acid soils: micromorphological, chemical and mineralogical evidence from individual argillans. Geoderma 10: 259–270.Google Scholar
Brinkman, R. 1979. Ferrolysis, a soil forming process in hydromorphic conditions. PhD thesis, Wageningen. Agr. Res. Rept. 887: 106 pp.Google Scholar
Brussaard, L. and Runia, L.T. 1984. Recent and ancient traces of scarab beetle activity in sandy soils of the Netherlands. Geoderma 34: 229–250.Google Scholar
Bullock, P., Fedoroff, N. Jongerius, A. Stoops, G. and Tursina, T. 1985. Handbook for soil thin section description. Waine Research Publications, Wolverhampton, U.K., 152 pp.Google Scholar
Buurman, P. 1970. Pollen analyses of the Helvoirt river valley. Geologie en Mijnbouw 49: 381–390 Google Scholar
De Bakker, H. 1965. Tonverlagerung in Fluszablagerungen verschiedener Art. Mitt Deutsche Bodenk. Gesellschaft 4: 123–128.Google Scholar
Fedoroff, N. 1972. Micromorphological characteristics of Quaternary pedogenesis in France. In: Ters, M.: Studies of the Quaternary throughout the world 1: 341–349.Google Scholar
Fitzpatrick, E.A. 1970. A technique for the preparation of large thin sections of soils and unconsolidated materials. In: Osmond, D.A. and Bullock, P. (Eds): Micromorphological techniques and applications. Techn. Monograph 2: 3–13.Google Scholar
Gombeer, R. and d’Hoore, J. 1971. Induced migration of clay and other moderately mobile constituents. III Critical soil/water dispersion ratio, colloid stability and electrophoretic mobility. Pédologie 21: 311–342.Google Scholar
Hoeksema., K.J. and Edelman, C.H. 1960. The role of biological homogenization in the formation and transformation of gray brown podzolic soils. Transactions 7th Int. Congr. Soil Sci., Madison, U.S.A. 4: 402–405.Google Scholar
Hoffman, R. and Blume, H.P. 1977. Holocene clay migration as a soil forming process in loamy soils of the moraine landscapes of north Germany. Catena 4: 359–368.CrossRefGoogle Scholar
Jamagne, M. 1969. Sols et paléosols sur loess dans le nord de la France. Etude du Quaternaire dans le monde. VIII Congrès INQUA, Vol. I, 359–372.Google Scholar
Jongmans, A.G. and Miedema, R. 1986. Morphology, genesis and distribution of calacareous material in Late Weichselian sediments of the Rhine and Meuse rivers in the eastern part of the Netherlands. Neth. J. agrie. Sci. 34: 441–449.Google Scholar
Kasse, C. Vandenberghe, J. and Bohncke, S.J.P. 1995. Climatic change and fluvial dynamics of the Maas during the Late Weichselian and Early Holocene. In: Frenzel, B. Vandenberghe, J. Kasse, C. Bohncke, S.J.P. and Glӓser, B. (Eds): European river activity and climatic change during the Late Glacial and Early Holocene.Google Scholar
Kemp, R.A. 1999. Micromorphology of loess-paleosol sequences: a record pf paleoenvironmental change. Catena 35: 179–196.Google Scholar
Langohr, R. and Pajares, G. 1983. The chrono-sequence of pedogenie processes in Fraglossudalfs of the Belgian loess belt. In: Bullock, P. and Murphy, C.P. (Eds): Soil Micromorphology, 2: 503–510. AB Academic Publishers, Berkhamsted, U.K.Google Scholar
Langohr, R. and van Vliet, B. 1979. Clay migration in well to moderately well drained acid brown soils of the Belgian Ardennes. Morphology and clay content determination. Pédologie 29: 367–385.Google Scholar
McKeague, J.A. 1983. Clay skins and argillic horizons. In: Bullock, P. and Murphy, C.P. (Eds): Soil Micromorphology, Vol I, 367–388. AB Academic Publishers, Berkhamsted, U.K.Google Scholar
Miedema, R. 1987. Soil formation, microstructure and physical behaviour of Late Weichselian and Holocene Rhine deposits in the Netherlands. PhD thesis Wageningen Agricultural University, The Netherlands, 339 pp.Google Scholar
Miedema, R. 1992. Processus de formation des sols tardiglaciaires et holocènes sur les terrasses alluviales du Rhin aux Pays-Bas. Science du Sol 30: 149–168.Google Scholar
Miedema, R. and Slager, S. 1972. Micromorphological quantification of clay illuviation. J. Soil Sci. 23: 309–315.Google Scholar
Miedema, R.E. van, Engelen and Pape, Th. 1978. Micromorphology of a toposequence of Late Pleistocene fluviatile soils in the eastern part of the Netherlands. In: Delgado, M.(Ed): Micromofologia de Suelos, 1: 469–501. T. Arte Prieto Moreno, Maracena (Granada), Spain.Google Scholar
Miedema, R., Slager, S. Jongmans, A.G. and Pape, Th. 1983. Amount, characteristics and significance of clay illuviation features in Late Weichselian Meuse terraces. In: Bullock, P. and Murphy, C.P. (Eds): Soil Micromorphology, 2: 519–531. AB Academic Publishers, Berkhamsted, U.K.Google Scholar
Miedema, R., Kulechova, I.N. and Gerasimova, M.I. 1999. Soil formation in Greyzems in Moscow district: micromorphology, chemistry, clay mineralogy and particle size distribution. Catena 34:315–347.Google Scholar
Mücher, H.J. 1986. Aspects of loess and loess-derived slope deposits: an experimental and micromorphological approach. PhD thesis University of Amsterdam. Nederl. Geogr. Studies 23: 267 pp.Google Scholar
Schröder, D. 1979. Bodenentwicklung in spätpleistozänen und holozänen Hochflutlehemen des Niederrheines. Habilitationsschrift Bonn, 296 pp.Google Scholar
Seghal, J.L., Gombeer, R. and d’Hoore, J. 1976. Clay migration in the formation of the argillic horizon in soils developed under varying moisture regimes. J. Indian Soc. Soil Sci. 24: 20–28.Google Scholar
Sevink, J., Hulshof, O., Mücher, H.J. and Kroonenberg, S.B. 1970. Age and development of some fossil podzols in the Dinkel Valley (E. Netherlands).Google Scholar
Physical Geographical and Soil Laboratory: from field to laboratory publication 16.Google Scholar
Targulian, V.O., Birina, A.G. Kulikov, A.V. Sokolova, T.A. and Tselischcheva, L.K. 1974. Arrangement, composition and genesis of sod-pale-podzolic soil derived from mantle loarns. Morphological investigation (47pp) and analytical investigation Int. Congr. Soil Sci. Moscow: 107 pp.Google Scholar
Tebbens, L.A., Veldkamp, A. Westerhoff, W. and Kroonenberg, S.B. 1999. Fluvial incision and channel downcutting as a response to Late-glacial and Early Holocene climate change: the lower reach of the river Meuse (Maas), The Netherlands. J. Quatern. Sci. 14: 59–75.Google Scholar
Van den Berg, M.W. 1996. Fluvial sequences of the Maas. A 10 Ma record of neotectonics and climate change at various time scales. PhD thesis Wageningen Agricultural University, The Netherlands: 181 pp.Google Scholar
Van den Berg, M.W. and Lokhorst, A. 1999. Paleoseismic investigations along the Peel boundary fault: geological setting, site selection and trenching results. In: Camelbeeck, T. (Ed): Contributions to the workshop on evaluation of the potential for large earthquakes in present day low seismic activity regions of Europe. Han sur Less, Belgium: 4 pp.Google Scholar
Van Vliet-Lanoë, B. 1985. Frost effects in soils. In: Boardman, J. (Ed): Soils and Quaternary Landscape Evolution. John Wiley and Sons Ltd, (Chichester, U.K.): 117–158.Google Scholar
Van Vliet-Lanoë, B. 1988. Le rôle de la glace de ségrégation dans les formations superficielle de l’Europe de l’ouest. Thèse de Doctorat d’Etat, Sorbonne: 854 pp.Google Scholar
Van Vliet-Lanoë, B. 1990. The genesis and age of the argillic horizon in Weichselian loess in northwestern Europe. Quaternary International 5: 49–56.CrossRefGoogle Scholar
Van Vliet-Lanoë, B. and Langohr, R. 1981. Correlation between fragipans and permafrost with special reference to silty Weichselian deposits in Belgium and northern France. Catena 8: 137–154.Google Scholar